Linear Transformations

January 31, 2007

Lecture 10

The Null Space and the Range of a Linear Transformation

- Let $T: V \rightarrow W$ be a linear transformation.
- The null space (or kernel) $N(T)$ of T is the set of all vectors x in V such that $T(x)=0$.
- The range (or image) $R(T)$ of T is the subset of W consisting of all images (under T) of vectors in V.

Theorem. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, then

$$
R(T)=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right) .
$$

Nullity and Rank

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear.
- Suppose that $N(T)$ and $R(T)$ are finite-dimensional.
- The nullity of T, denoted nullity (T), is defined to be the dimension of $N(T)$.

Nullity and Rank

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear.
- Suppose that $N(T)$ and $R(T)$ are finite-dimensional.
- The nullity of T, denoted nullity (T), is defined to be the dimension of $N(T)$.
- The $\mathbf{r a n k}$ of T, denoted $\operatorname{rank}(T)$, is defined to be the dimension of $R(T)$.

Dimension Theorem

Theorem. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If V is finite dimensional, then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)
$$

Theorem. Let V and W be vector spaces, and let $T: V \rightarrow W$ be lineaar. Then T is one-to-one if and only if $N(T)=\{0\}$.

Theorem. Let V and W be vector spaces, and let $T: V \rightarrow W$ be lineaar. Then T is one-to-one if and only if $N(T)=\{0\}$.

Theorem. Let V and W be vector spaces of equal (finite) dimension, and let $T: V \rightarrow W$ be linear. Then the following are equivalent:

1. T is one-to-one.
2. T is onto.
3. $\operatorname{rank}(T)=\operatorname{dim}(V)$.

Linear Transformations are Determined by the Values on a Basis

Theorem. Let V and W be vector spaces over F, and suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. For $w_{1}, w_{2}, \ldots, w_{n}$ in W, there exists exactly one linear transformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for $i=1,2, \ldots, n$.

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $U, T: V \rightarrow W$ are linear and $U\left(v_{i}\right)=T\left(v_{i}\right)$ for $i=1,2, \ldots, n$, then $U=T$.

