Linear Transformations

January 31, 2007

The Null Space and the Range of a Linear Transformation

- Let $T: V \to W$ be a linear transformation.
- The **null space** (or **kernel**) N(T) of T is the set of all vectors x in V such that T(x) = 0.
- The **range** (or **image**) R(T) of T is the subset of W consisting of all images (under T) of vectors in V.

1

Theorem. Let *V* and *W* be vector spaces, and let $T : V \to W$ be linear. If $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for *V*, then

$$R(T) =$$
span $(\{T(v_1), T(v_2), \dots, T(v_n)\}).$

Nullity and Rank

- Let *V* and *W* be vector spaces, and let $T: V \to W$ be linear.
- Suppose that N(T) and R(T) are finite-dimensional.
- The **nullity** of *T*, denoted nullity(*T*), is defined to be the dimension of N(T).

Nullity and Rank

- Let V and W be vector spaces, and let $T: V \to W$ be linear.
- Suppose that N(T) and R(T) are finite-dimensional.
- The **nullity** of *T*, denoted nullity(*T*), is defined to be the dimension of *N*(*T*).
- The **rank** of *T*, denoted rank(T), is defined to be the dimension of R(T).

Dimension Theorem

Theorem. Let *V* and *W* be vector spaces, and let $T : V \rightarrow W$ be linear. If *V* is finite dimensional, then

nullity(T) + rank(T) = dim(V).

Theorem. Let *V* and *W* be vector spaces, and let $T : V \to W$ be lineaar. Then *T* is one-to-one if and only if $N(T) = \{0\}$.

Theorem. Let *V* and *W* be vector spaces, and let $T : V \to W$ be lineaar. Then *T* is one-to-one if and only if $N(T) = \{0\}$.

Theorem. Let V and W be vector spaces of equal (finite) dimension, and let $T : V \rightarrow W$ be linear. Then the following are equivalent:

- 1. *T* is one-to-one.
- **2.**T is onto.
- 3. rank(T) = dim(V).

Linear Transformations are Determined by the Values on a Basis

Theorem. Let *V* and *W* be vector spaces over *F*, and suppose that $\{v_1, v_2, \ldots, v_n\}$ is a basis for *V*. For w_1, w_2, \ldots, w_n in *W*, there exists exactly one linear transformation $T : V \to W$ such that $T(v_i) = w_i$ for $i = 1, 2, \ldots, n$.

Corollary. Let *V* and *W* be vector spaces, and suppose that *V* has a finite basis $\{v_1, v_2, \ldots, v_n\}$. If $U, T : V \to W$ are linear and $U(v_i) = T(v_i)$ for $i = 1, 2, \ldots, n$, then U = T.