
Worksheet for May 28

MATH 24 — SPRING 2014

Sample Solutions

Consider the matrix

A =


0 0 1 2 3
0 0 2 1 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 1


and let A also denote the corresponding left multiplication transformation R5 → R5. The charac-
teristic polynomial of A splits det(A− tI) = −t3(1− t)2, but it is not diagonalizable.

(A) Note that

A2 =


0 0 0 3 6
0 0 0 3 3
0 0 0 1 2
0 0 0 1 2
0 0 0 0 1

 .

1.– Explain why the generalized eigenspace K0 equals the null space of A2.

Solution — We know from Theorem 7.4(c) that dim(K0) equals the algebraic multiplicity
of the eigenvalue 0, which is 3. Since the null space of A2 = (A− 0I)2 has dimension 3,
it must equal K0.

2.– Explain why the dot diagram corresponding to the eigenvalue 0 must be:
• •
•

Solution — The number of dots in the first row is the nullity of A, which is 2. We must
have 3 dots in total, so the pattern must be :

• •
•

3.– Find a vector x2 ∈ K0 such that x1 = Ax2 6= 0.

Solution — A basis for the null space of A2 is {e1, e2, e3}. One of these vectors must be
outside the null space of A. By inspection, x2 = e3 works since

x1 = Ae3 =


1
2
0
0
0

 .



4.– Find a vector x3 ∈ K0 such that {x1, x3} is a basis for the null space of A.

Solution — A basis for the null space of A is {e1, e2}. By the Replacement Theorem, one
of these two basis vectors must form a basis for the null space of A along with the vector
x1 above. Since neither e1 nor e2 is a multiple of x1, they actually both work. So we can
pick x3 = e1.

(B) Note that

(A− I)2 = A2 − 2A+ I =


1 0 −2 −1 0
0 1 −4 1 3
0 0 1 −1 0
0 0 0 0 0
0 0 0 0 0

 .

1.– Explain why the generalized eigenspace K1 equals the null space of (A− I)2.

Solution — We know from Theorem 7.4(c) that dim(K1) equals the algebraic multiplicity
of the eigenvalue 1, which is 2. Since the null space of (A− I)2 has dimension 2, it must
equal K0.

2.– Explain why the dot diagram corresponding to the eigenvalue 1 must be:
•
•

Solution — The number of dots in the first row is the nullity of A − I, which is 1. We
must have 2 dots in total, so the pattern must be :

•
•

3.– Find a vector y2 ∈ K1 such that y1 = (A− I)y2 6= 0.

Solution — A basis for the null space of (A− I)2 is


3
3
1
1
0

 ,


0
3
0
0
1


 .

One of these two vectors must be outside the null space of A− I, since it has dimension
1. By inspection, we can pick

y2 =


0
−3
0
0
1

 since y1 = (A− I)y2 =


3
3
1
1
0

 .

4.– Check that y1 generates the null space of A− I.

Solution — The null space of A− I is one dimensional and it contains the nonzero vector
y1, so the null space of A− I must be span{y1}.



(C) Verify that β = {x1, x2, x3, y1, y2} is a basis for R5 and compute the matrix representa-
tion [LA]β.

Solution — We could check that the vectors we found are linearly independent, or rely on
Theorem 7.4(b) to see that β is a basis for R5.

The way we picked the vectors in β leads to the equations:

Ax1 = 0, [Ax1]β = (0, 0, 0, 0, 0);

Ax2 = x1, [Ax2]β = (1, 0, 0, 0, 0);

Ax3 = 0, [Ax3]β = (0, 0, 0, 0, 0);

and
(A− I)y1 = 0, Ay1 = y1, [Ay1]β = (0, 0, 0, 1, 0);

(A− I)y2 = y, Ay2 = y1 + y2, [Ay2]β = (0, 0, 0, 1, 1).

Therefore,

[LA]β =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1


which is exactly the Jordan canonical form the dot patterns we found predicted.


