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Sample Solutions

The following theorems form the skeleton of an alternate development of the key results of Sec-
tion 1.6 on bases and dimension.

THEOREM 1. If v1, v2, . . . , vk is a finite list of vectors in a vector space V such that

vi /∈ span{v1, . . . , vi−1}

for i = 1, 2, . . . , k, then the set {v1, v2, . . . , vk} is linearly independent.

Proof. We prove this indirectly: assuming that {v1, v2, . . . , vk} is linearly dependent we will show
that vi ∈ span{v1, . . . , vi−1} for some i ∈ {1, 2, . . . , k}.

Suppose
a1v1 + a2v2 + · · ·+ aivi = 0

where ai 6= 0. Since ai 6= 0, we can solve for vi above to obtain:

vi = −
a1
ai
v1 −

a2
ai
v2 − · · · −

ai−1

ai
vi−1.

Therefore, vi ∈ span{v1, v2, . . . , vi−1}.
We thus conclude that if vi /∈ span{v1, . . . , vi−1} for every i ∈ {1, 2, . . . , k} then {v1, v2, . . . , vk}

is linearly independent.

THEOREM 2. Suppose A is a finite set of vectors in a vector space V. If C ⊆ A is linearly inde-
pendent then there is a linearly independent set B such that C ⊆ B ⊆ A and span(B) = span(A).

Proof. For any fixed set C of i linearly independent vectors in V, we will prove the result by
induction on k ≥ i, where k is the number of vectors in the set A.

Base Case (k = i): Then A = C, so choosing B = A = C always meets the requirements of
the theorem.

• C ⊆ B ⊆ A,

• B is linearly independent since C is and B = C, and

• span(B) = span(A) since B = A.



Induction Step (k → k + 1): Let A = {v1, v2, . . . , vk, vk+1} be a given set of k + 1 vectors
from V, where C = {v1, v2, . . . , vi}. The induction hypothesis for the set A0 = {v1, v2, . . . , vk} of
k vectors tells us that there is a set B0 such that:

• C ⊆ B0 ⊆ A0,

• B0 is linearly independent, and

• span(B0) = span(A0).

We now consider two cases depending on whether or not vk+1 ∈ span(B0).
In the case where vk+1 ∈ span(B0), the set B = B0 works:

• C ⊆ B ⊆ A because B = B0 ⊆ A0 ⊆ A,

• B is linearly independent because B0 is, and

• span(B) = span(A) by Theorem 1.5 since A = A0 ∪ {vk+1} ⊆ span(B).

In the case where vk+1 /∈ span(B0), the set B = B0 ∪ {vk+1} works:

• C ⊆ B ⊆ A because B = B0 ∪ {vk+1} ⊆ A0 ∪ {vk+1} = A,

• B is linearly independent by Theorem 1.5 because B0 is linearly independent and vk+1 /∈
span(B0), and

• span(B) = span(A) by Theorem 1.5 since A = A0 ∪ {vk+1} ⊆ span(B).

Either way, we found a suitable set B. We can therefore conclude that the result is true when
the set A has k + 1 elements.

By the principle of mathematical induction, we conclude that the result is true for every finite
set A of vectors containing C. Since C was an arbitrary finite linearly independent subset of V, we
conclude that the result is true for all suitable A and C.

THEOREM 3. Every finite generating set in a vector space V contains a basis for V.

Proof. Suppose A is a finite generating set of vectors for V.
By Theorem 2, there is a set B such that:

1. ∅ ⊆ B ⊆ A,

2. B is linearly independent, and

3. span(B) = span(A) = V.

Thus, B is a basis for V contained in A.

THEOREM 4. Every finite linearly independent set in a finitely generated vector space V can be
extended to a basis for V.



Proof. Suppose C is a finite linearly independent subset of V and that A is a finite generating set
for V. We may further assume that C ⊆ A, otherwise replace A with the larger finite generating
set A ∪ C.

By Theorem 2, there is a set B such that:

1. C ⊆ B ⊆ A,

2. B is linearly independent, and

3. span(B) = span(A).

Since span(A) = V by hypothesis, we conclude that B is a basis for V extending C.

THEOREM 5. If v1, v2, . . . , vk is a finite list of vectors in a vector space V then every list of k + 1
(or more) vectors from span{v1, v2, . . . , vk} is linearly dependent.

Proof. We proceed by induction on k ≥ 1.
Base Case (k = 1): Suppose x1, x2 ∈ span{v1}, say x1 = a1v1 and x2 = a2v1. Then

a2x1 − a1x2 = a2(a1v1)− a1(a2v1) = (a2a1 − a1a2)v1 = 0v1 = 0.

On the one hand, if a1 6= 0 or a2 6= 0, this shows that x1, x2 are linearly dependent. On the other
hand, if a1 = a2 = 0 then x1 = x2 = 0 and hence x1, x2 are again linearly dependent since any list
containing the zero vector is linearly dependent.

Induction Step (k − 1→ k): Suppose x1, x2, . . . , xk, xk+1 ∈ span{v1, v2, . . . , vk}, say:

x1 = a1,1v1 + a1,2v2 + · · ·+ a1,kvk
x2 = a2,1v1 + a2,2v2 + · · ·+ a2,kvk
...

...
...

xk = ak,1v1 + ak,2v2 + · · ·+ ak,kvk
xk+1 = ak+1,1v1 + ak+1,2v2 + · · ·+ ak+1,kvk

We consider two cases.
In the case where a1,k = a2,k = · · · = ak,k = ak+1,k = 0, then we actually have that

x1, x2, . . . , xk, xk+1 ∈ span{v1, v2, . . . , vk−1}. Therefore, the induction hypothesis applies directly
to conclude that x1, x2, . . . , xk, xk+1 are linearly dependent.

Otherwise, at least one of the ai,k is nonzero. Without loss of generality, we may assume
ak+1,k 6= 0. Consider the vectors y1, y2, . . . , yk defined by

y1 = x1 −
a1,k
ak+1,k

xk+1, y2 = x2 −
a2,k
ak+1,k

xk+1, . . . , yk = xk −
ak,k
ak+1,k

xk+1.

Observe that y1, y2, . . . , yk ∈ span{v1, v2, . . . , vk−1}. Therefore the induction hypothesis applies
to these vectors to conclude that there are scalars b1, b2, . . . , bk, not all zero, such that

0 = b1y1 + b2y2 + · · ·+ bkyk.

Substituting yi = xi − ai,k
ak+1,k

xk+1, we find

0 = b1x1 + b2x2 + · · ·+ bkxk − cxk+1,



where
c = b1

a1,k
ak+1,k

+ b2
a2,k
ak+1,k

+ · · ·+ bk
ak,k
ak+1,k

.

Since the scalars b1, b2, . . . , bk are not all zero, this shows that the vectors x1, x2, . . . , xk, xk+1 are
linearly dependent.

By the principle of mathematical induction, we conclude that the result is true for all finite list
of vectors v1, v2, . . . , vk.

THEOREM 6. If A and B are finite subsets of a vector space V such that A generates V and B is
linearly independent, then A contains at least as many vectors as B.

Proof. Suppose A and B are finite subsets of a vector space V. We will prove the desired result
indirectly: assuming that A generates V and that A has fewer vectors than B, we will show that B
is linearly dependent.

Write A = {v1, v2, . . . , vk} and B = {x1, x2, . . . , x`}, where the two enumerations contain no
repetitions. Since B has more vectors than A, it follows that ` ≥ k+1. By Theorem 5, the vectors
x1, x2, . . . , xk+1 must be linearly dependent. It then follows from Theorem 1.6 that B is linearly
dependent too.

We therefore conclude that if A generates V and B is linearly independent, then A contains at
least as many vectors as B.

THEOREM 7. If the vector space V is finitely generated, then V has a finite basis and all bases for
V have the same size.

Proof. First, the fact that V has a finite basis is a direct consequence of Theorem 3. So it suffices
to show that any two finite bases A and B for V must have the same size.

Since A generates V and B is linearly independent, it follows from Theorem 6 that A has at
least as many elements as B. Similarly, since B generates V and A is linearly independent, it
follows from Theorem 6 that B has at least as many elements as A. Given these two facts, the only
possibility is that A and B have the same size.

DEFINITION. A vector space V is finite dimensional if it has a finite basis. The common size of
all the bases for V is called the dimension of V and it is often denoted dim(V).

THEOREM 8. Suppose V is a vector space of dimension n.

(a) Every linearly independent subset of V with size n is a basis.

(b) Every generating set for V with size n is a basis.

Proof. Assume V has dimension n and suppose that A is a subset of V with size n.

(a) If A is linearly independent, then A can be extended to a basis B for V by Theorem 4. By
Theorem 7, B must have size n and therefore B = A since A already has size n. Therefore, A
is a basis for V.

(b) If A generates V, then A contains a basis B for V by Theorem 3. By Theorem 7, B must have
size n and therefore B = A since A already has size n. Therefore, A is a basis for V.


