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Dual Transformations

Theorem

If T : V→W is a linear operator, then T t : W∗ → V∗ is a linear
operator too where

T t(f )(•) = f (T•)

for all f ∈W∗.

Given f , g ∈W∗, we have

T t(f +g)(•) = (f +g)(T•) = f (T•)+g(T•) = T t(f )(•)+T t(g)(•).

If c is a scalar, we have

T t(cf )(•) = (cf )(T•) = c(f (T•)) = cT t(f )(•).



Self-Duality of Inner Product Spaces

Theorem

Let V be a finite dimensional inner product space. There is a
conjugate-linear isomorphism θ : V∗ → V such that

f (•) = 〈•, θ(f )〉

for all f ∈ V∗.

If {v1, v2, . . . , vn} is any orthonormal basis for V, then

θ(f ) = f (v1)v1 + f (v2)v2 + · · ·+ f (vn)vn.

The inverse θ−1 : V→ V∗ is given by

θ−1(w)(•) = 〈•,w〉

for all w ∈ V.



Adjoint Transformation

Theorem

Let V be a finite dimensional inner product space. For every linear
operator T : V→ V there is a unique linear operator T ∗ : V→ V
such that

〈Tx , y〉 = 〈x ,T ∗y〉

for all x , y ∈ V.

The adjoint T ∗ : V→ V is T ∗ = θT tθ−1 because

〈Tx , y〉 = θ−1(y)(Tx) = T tθ−1(y)(x) = 〈x , θT tθ−1(y)〉

for all x , y ∈ V.

T ∗ is called the adjoint of T



Adjoint Matrix

Recall that the adjoint A∗ of a matrix A ∈ Mn×n(C) is the
conjugate transpose of A.

Theorem

Let V be a finite dimensional inner product space with orthonormal
basis β = {v1, v2, . . . , vn}. For every linear operator T : V→ V we
have [T ∗]β = [T ]∗β.

Because
〈T ∗vi , vj〉 = 〈vj ,T ∗vi 〉 = 〈Tvj , vi 〉,

the (j , i)-th entry of [T ∗]β is the conjugate of the (i , j)-th entry
of [T ]β.



Normal Operators

Definition

A linear operator T : V→ V is normal if it commutes with its
adjoint: T ∗T = TT ∗.

Theorem

Suppose T : V→ V is a linear operator on a finite dimensional
complex inner product space V. Then T is normal if and only if T
has an orthonormal basis of eigenvectors.

The ‘only if’ part will be shown next week. . .



Self-Adjoint Operators

Definition

A linear operator T : V→ V is self-adjoint if it equals its adjoint:
T = T ∗.

Theorem

Suppose T : V→ V is a linear operator on a finite dimensional real
inner product space V. Then T is self-adjoint if and only if T has
an orthonormal basis of eigenvectors.

The ‘only if’ part will be shown next week. . .



Orthogonal Complements

Let V be an inner product space.
The orthogonal complement of a subspace W of V is

W⊥ = {x ∈ V : 〈x , y〉 = 0 for all y ∈W}.

If W = span(S) then

W⊥ = {x ∈ V : 〈x , y〉 = 0 for all y ∈ S}.

Properties

I W⊥ is a subspace of V.

I W ∩W⊥ = {0}.
I (W⊥)⊥ = W.

I V⊥ = {0} and {0}⊥ = V.



Orthogonal Projections

Theorem

If V is a finite dimensional inner product space and W is a
subspace of V, then V = W ⊕W⊥ (direct sum).
In other words, every x ∈ V has a unique decomposition x = u + v

where u ∈W and v ∈W⊥.

If {w1,w2, . . . ,wk} is any orthonormal basis for the subspace W,
then the component u in the above decomposition must be

P(x) = 〈x ,w1〉w1 + 〈x ,w2〉w2 + · · ·+ 〈x ,wk〉wk .

The linear transformation P : V→ V so defined is the orthogonal
projection onto W.


