Slides for May 12

MATH 24 — SPRING 2014

Inner Products over \mathbb{R}

Definition

An **inner product** on a vector space V over $\mathbb R$ is a positive definite symmetric bilinear form $\langle \bullet, \bullet \rangle : \mathsf{V} \times \mathsf{V} \to \mathbb R$:

- ▶ **Symmetry:** $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$.
- ▶ **Bilinearity:** For all $x, x', y, y' \in V$ and all scalars c:

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle, \quad \langle cx, y \rangle = c \langle x, y \rangle;$$

 $\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle, \quad \langle x, cy \rangle = c \langle x, y \rangle.$

▶ **Positive Definiteness:** For every $x \in V$, $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ only when x = 0.

Example. The standard inner product on \mathbb{R}^n is

$$\langle x,y\rangle=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Inner Products over C

Definition

An **inner product** on a vector space V over \mathbb{C} is a positive definite conjugate-symmetric sesquilinear form $\langle \bullet, \bullet \rangle : V \times V \to \mathbb{C}$:

- ► Conjugate-Symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$.
- ▶ **Sesquilinearity:** For all $x, x', y, y' \in V$ and all scalars c:

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle, \quad \langle cx, y \rangle = c \langle x, y \rangle; \langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle, \quad \langle x, cy \rangle = \overline{c} \langle x, y \rangle.$$

▶ **Positive Definiteness:** For every $x \in V$, $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ only when x = 0.

Example. The **standard inner product** on \mathbb{C}^n is

$$\langle x,y\rangle=x_1\overline{y_1}+x_2\overline{y_2}+\cdots+x_n\overline{y_n}.$$

Spaces of continuous functions

Example

The space C([a, b]) of continuous real-valued functions on the interval [a, b] is a vector space over \mathbb{R} with inner product

$$\langle f,g\rangle=\int_a^b f(t)g(t)\,dt.$$

The tricky thing to check is positive definiteness:

- ▶ Since $f(t)^2 \ge 0$, we certainly have $\langle f, f \rangle \ge 0$.
- ▶ If $f(t_0) \neq 0$ then there is a small interval $(t_0 \varepsilon, t_0 + \varepsilon)$ over which $f(t)^2 \geq f(t_0)^2/2$. Thus $\langle f, f \rangle \geq \varepsilon f(t_0)^2 > 0$.

The Frobenius inner product

Definition

The **adjoint** of a matrix $A \in M_{n \times n}(\mathbb{C})$ is the matrix

$$A^* = \overline{A^t} = \begin{pmatrix} \frac{A_{11}}{A_{12}} & \frac{A_{21}}{A_{22}} & \cdots & \frac{A_{n1}}{A_{n2}} \\ \vdots & \vdots & & \vdots \\ \overline{A_{1n}} & \overline{A_{2n}} & \cdots & \overline{A_{nn}} \end{pmatrix}.$$

Example

For $A, B \in M_{n \times n}(\mathbb{C})$,

$$\langle A,B\rangle=\operatorname{tr}(B^*A)$$

defines an inner product on $M_{n\times n}(\mathbb{C})$.

Norms

Definition

The **norm** of a vector x in an inner product space V is

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Theorem

Suppose V is an inner product space.

- ▶ $||x|| \ge 0$ for every $x \in V$ and ||x|| = 0 only when x = 0.
- ▶ ||cx|| = |c|||x|| for every $x \in V$ and every scalar c.
- ▶ Triangle Inequality: $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.
- ► Cauchy–Schwarz: $|\langle x, y \rangle| \le ||x|| ||y||$ for all $x, y \in V$.

The Cauchy–Schwarz Inequality for $\mathbb R$

Given $x, y \in V$ with $y \neq 0$, let

$$q(t) = \langle x - ty, x - ty \rangle = \langle x, x \rangle - 2\langle x, y \rangle t + \langle y, y \rangle t^{2}.$$

The minimum of of this quadratic occurs when $t=\langle x,y\rangle/\langle y,y\rangle,$ and the nonnegative value is

$$q\left(\frac{\langle x,y\rangle}{\langle y,y\rangle}\right) = \langle x,x\rangle - \frac{\langle x,y\rangle^2}{\langle y,y\rangle}.$$

Multiplying through by $\langle y, y \rangle \geq 0$, we obtain that

$$0 \le \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2$$

or, equivalently,

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle = ||x||^2 ||y||^2.$$

Therefore, $|\langle x, y \rangle| = \sqrt{\langle x, y \rangle^2} \le \sqrt{\|x\|^2 \|y\|^2} = \|x\| \|y\|$.

Triangle and Cauchy–Schwarz Inequalities for $\mathbb R$

On the one hand,

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2.$$

On the other hand,

$$(\|x\| + \|y\|)^2 = \|x\|^2 + 2\|x\|\|y\| + \|y\|^2.$$

Therefore,

$$||x + y||^2 \le (||x|| + ||y||)^2$$

if and only if

$$\langle x, y \rangle \le ||x|| ||y||.$$

Orthogonality

Definition

Let V be an inner product space.

- ▶ A **unit vector** is a vector of norm 1.
- ▶ Two vectors $x, y \in V$ are **orthogonal** if $\langle x, y \rangle = 0$.

Definition

An **orthogonal basis** for an *n*-dimensional inner product space V is a basis $\{v_1, v_2, \ldots, v_n\}$ such that $\langle v_i, v_j \rangle = 0$ when $i \neq j$. If, moreover, $\langle v_i, v_i \rangle = 1$ for each i, we say that $\{v_1, v_2, \ldots, v_n\}$ is an **orthonormal basis**.

The standard basis for \mathbb{R}^n and \mathbb{C}^n is orthonormal for the standard inner product.

Othonormal Bases

Theorem

Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is an orthonormal basis for the inner product space V. The coordinates of a vector $x \in V$ are

$$[x]_{\beta} = (\langle x, v_1 \rangle, \langle x, v_2 \rangle, \dots, \langle x, v_n \rangle).$$

Proof.

Suppose

$$x = a_1v_1 + a_2v_2 + \cdots + a_nv_n$$

so $[x]_{\beta} = (a_1, a_2, \dots, a_n)$. Then

$$\langle x, v_i \rangle = a_1 \langle v_1, v_i \rangle + a_2 \langle v_2, v_i \rangle + \cdots + a_n \langle v_n, v_i \rangle.$$

Since $\langle v_j, v_i \rangle = 0$ when $i \neq j$ and $\langle v_i, v_i \rangle = 1$, we see that $\langle x, v_i \rangle = a_i$.

Gram-Schmidt Algorithm

Suppose $\{x_1, x_2, \dots, x_n\}$ is a basis for an inner product space V. Then the vectors

$$\begin{aligned} v_1 &= x_1, \\ v_2 &= x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1, \\ v_3 &= x_3 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1, \\ &\vdots &\vdots \\ v_n &= x_n - \frac{\langle x_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_{n-1} - \dots - \frac{\langle x_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1, \end{aligned}$$

form an orthogonal basis for V.