
Homework Notes — Week 4

Math 24 — Spring 2014

§2.4#4 Let A and B be n × n invertible matrices. We want to show that AB is
invertible and that (AB)−1 = B−1A−1.

Recall that an n × n matrix X is invertible if there is an n × n matrix Y with
XY = Y X = I, the n× n identity matrix.

So to see that X = AB is invertible we only need to find a matrix Y such that
(AB)Y = Y (AB) = I. Well, the question actually tells us what matrix we should
try to use for Y , namely Y = B−1A−1.

Now we actually need to see if this choice works, and to see this we recall a few
facts, namely the fact that matrix multiplication is associative, and that

AA−1 = A−1A = I (1)

BB−1 = B−1B = I. (2)

Now we check that (AB)Y = Y (AB) = I,

(AB)Y = A(BY ) (associativity of matrix multiplication)

= A(B(B−1A−1)) (definition of Y )

= A((BB−1)A−1) (associativity of matrix multiplication)

= A(IA−1) (equation (2))

= AA−1 (I is the identity matrix)

= I (equation (1))
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Y (AB) = (Y A)B (associativity of matrix multiplication)

= ((B−1A−1)A)B (definition of Y )

= (B−1(A−1A))B (associativity of matrix multiplication)

= (B−1I)B (equation (1))

= B−1B (I is the identity matrix)

= I (equation (2)).

So we have seen that (AB)(B−1A−1) = (B−1A−1)AB = I, which means exactly
that (AB)−1 = B−1A−1.

§2.4#7 Let A be an n× n matrix. We need to show that (a) if A2 = 0 then A is
not invertible, and (b) determine whether A could be invertible if AB = 0 for some
nonzero n× n matrix B.

For (a), what would happen if A were invertible? In that case there exista some
n × n matrix called A−1 such that AA−1 = A−1A = I. An idea here would be to
multiply both sides of A2 = 0 by A−1 on the left to obtain a new equation, namely

0 = A−10 (0 = 0X = X0 for any matrix X)

= A−1(A2) (by our assumption)

= A−1(AA) (A2 = AA)

= (A−1A)A (associativity of matrix multiplication)

= IA (since A−1A = I)

= A (I is the identity matrix).

But now A = 0 which is NOT and invertible matrix. So if A is invertible then
A2 6= 0 which is the contrapositive of the statement we were asked to prove.

For (b), the answer is no. Suppose that A is invertible and that AB = 0 for some
n × n matrix B, then we can demonstrate that in face B = 0, so there can be no
nonzero B with the property that AB = 0.

Specifically we have that

B = IB

= (A−1A)B

= A−1(AB)

= A−10

= 0,
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exactly as predicted.

§2.4#16* Theorem. Let B be an invertible n × n matrix. The function Φ :
Mn×n(F )→ Mn×n(F ) defined by Φ(A) = B−1AB is an isomorphism.

Proof. First we need to verify that Φ is a linear transformation. Well if C,D ∈
Mn×n(F ) and a ∈ F then

Φ(aC +D) = B−1(aC +D)B

= (B−1(aC) +B−1D)B

= B−1(aC)B +B−1DB

= aB−1CB +B−1DB

= aΦ(C) + Φ(D),

so Φ is a linear transformation.
Now we will find an inverse map to Φ. To this end, consider the map Ψ :

Mn×n(F ) → Mn×n(F ) given by Ψ(A) = BAB−1. A similar computation as with Φ
shows that Ψ is a a linear transformation.

If A ∈ Mn×n(F ) then

Φ ◦Ψ(A) = Φ(BAB−1)

= B−1(BAB−1)B

= (B−1B)A(BB−1)

= InAIn

= A,

Ψ ◦ Φ(A) = Ψ(B−1AB)

= B(B−1AB)B−1

= (BB−1)A(BB−1)

= InAIn

= A,

meaning exactly that Φ ◦ Ψ = Ψ ◦ Φ = IMn×n(F ), the identity transformation
Mn×n(F )→ Mn×n(F ).

§2.5#6bd For each matrix A and ordered basis β, we need to find find [LA]β and
also find an invertible matrix Q such that [LA]β = Q−1AQ.
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(b) A =

(
1 2
2 1

)
and β =

{(
1
1

)
,

(
1
−1

)}
For the first part of the problem we can just compute what [LA]β using the
definition. In particular

LA

(
1
1

)
=

(
1 2
2 1

)(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
+ 0

(
1
−1

)
LA

(
1
−1

)
=

(
1 2
2 1

)(
1
−1

)
=

(
−1

1

)
= 0

(
1
1

)
+ (−1)

(
1
−1

)
,

so by definition [LA]β =

(
3 0
0 −1

)
.

To do this problem, we appeal to the Corollary to Theorem 2.23 on page 115

of the textbook which tells us that the matrix Q =

(
1 1
1 −1

)
satisfies the

condition, i.e. that

[LA]β =

(
3 0
0 −1

)
= Q−1AQ.

(d) A =

 13 1 4
1 13 4
4 4 10

 and β =


 1

1
−2

 ,

 1
−1

0

 ,

 1
1
1


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Again we can compute [LA]β just by computing LA on the basis β,

LA

 1
1
−2

 =

 13 1 4
1 13 4
4 4 10

 1
1
−2


=

 6
6

−12


= 6

 1
1
−1

+ 0

 1
−1

0

+ 0

 1
1
1

 ,

LA

 1
1
−2

 =

 13 1 4
1 13 4
4 4 10

 1
−1

0


=

 12
−12

0


= 0

 1
1
−2

+ 12

 1
−1

0

+ 0

 1
1
1

 ,

LA

 1
1
−2

 =

 13 1 4
1 13 4
4 4 10

 1
1
1


=

 18
18
18


= 0

 1
1
−1

+ 0

 1
−1

0

+ 18

 1
1
1

 ,

so that by definition

[LA]β =

 6 0 0
0 12 0
0 0 18

 .
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Now again we can use the corollary on page 115 of the textbook to assert that
if

Q =

 1 1 1
1 −1 1
−2 0 1


then [LA]β = Q−1AQ.

§2.5#9 We want to show that ”is similar to” is an equivalence relation on Mn×n(F ).
By the definition of equivalence relations, this problem has three basic parts:

(i) Reflexivity: A is always similar to A.

(ii) Symmetry: If A is similar to B, then B is similar to A.

(iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C.

We proceed to verify all three in order.

(i) If A ∈ Mn×n(F ) then A is similar to A.

To see that A is similar to A we must find a matrix Q ∈ Mn×n(F ) with A =
Q−1AQ. But A = I−1AI so Q = I will work.

(ii) If A,B ∈ Mn×n(F ) and A is similar to B then B is similar to A.

Supposing that A is similar to B means that we have an invertible matrix
Q ∈ Mn×n(F ) with A = Q−1BQ. We want to prove that B is similar to A,
so we must find a matrix P ∈ Mn×n which is invertible and B = P−1AP .
Certainly thought B = QAQ−1 so P = Q−1 works.

(iii) If A,B,C ∈ Mn×n(F ) where A is similar to B and B is similar to C then A is
similar to C.

Since A is similar to B and B is similar to C there are invertible matrices
Q,P ∈ Mn×n(F ) with

A = Q−1BQ, B = P−1CP.

But then

A = Q−1BQ = Q−1(P−1AP )Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ)

where the last equality follows from the fact that (PQ) = Q−1P−1 (this is true
by Exercise 4 in Section 2.4).

So the matrix T = PQ satisfies A = T−1CT so that A is similar to A.
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§2.5#12* Theorem. Let A ∈ Mn×n(F ) and let γ = {v1, . . . , vn} be an ordered
basis for F n. Then [LA]γ = Q−1AQ where Q is the n× n matrix whose jth column
is the jth vector of γ.

Proof. First let β = {e1, . . . , en} be the standard ordered basis for F n, specifically ei
is the vector with a 1 in the ith coordinate and 0 everywhere else.

Then since LA(ei) is the ith column of A, we have that [LA]β = A.
Then Theorem 2.23 [LA]γ = Q−1[LA]βQ = Q−1AQ where Q is the change of

coordinates matrix that changes γ-coordinates into β-coordinates. So the jth column
of Q is precisely [vj]β.

The claim will follow if we can show that [vj]β = vj. In fact if w ∈ F n is any
vector then [w]β = w. To see this we note that there are w1, . . . , wn ∈ F with

w =

 w1
...
wn

 =
n∑
k=1

wkek

so by definition [w]β = w.
This means that the jth column of Q is [vj]β = vj which is the jth vector of γ.
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