
Homework Notes — Week 3

Math 24 — Spring 2014

§2.1:5 To see that T : P2(R)→ P3(R) is linear, it suffices to check that

T (af(x) + bg(x)) = aT (f(x)) + bT (g(x))

for any f(x), g(x) ∈ P2(R) and any real numbers a, b. From familiar properties of
polynomials from algebra and calculus, we see that this is indeed the case:

T (af(x) + bg(x)) = x(af(x) + bg(x)) + d
dx

[af(x) + bg(x)]

= (xaf(x) + xbg(x)) + (af ′(x) + bg′(x))

= (xaf(x) + af ′(x)) + (xbg(x) + bg′(x))

= a(xf(x) + f ′(x)) + b(xg(x) + g′(x)) = aT (f(x)) + bT (g(x)).

To find a basis for N(T ), we need to look at the equation T (f(x)) = 0, or f ′(x) =
−xf(x). Unless f(x) is the zero polynomial, the degree of f ′(x) is one less than that
of f(x) and the degree of −xf(x) is one more than that of f(x). Therefore, the only
case where this equality can hold is when f(x) is the zero polynomial. Therefore
N(T ) = {0}, and a basis for this subspace is ∅.

To find a basis for R(T ), we can use the proof of the Dimension Theorem to
guide us. Since {1, x, x2} is a basis for P2(R) that extends our basis for N(T ),
{T (1), T (x), T (x2)} must form a basis for R(T ). (See the Claim from the proof of the
Dimension Theorem in the April 4 slides.) Therefore, {x, x2 + 1, x2 + 2x} is a basis
for R(T ).

So nullity(T ) = 0, rank(T ) = 3, and since dim(P2(R)) = 3, the Dimension
Theorem is indeed true.

§2.1:14* To organize ideas, it is convenient to break the first two parts into two
theorems.

One direction of part (a) corresponds to the following result.
Theorem A1. Suppose T : V → W is a one-to-one linear transformation. If

S ⊆ V is linearly independent then

T (S) = {T (x) ∈ W : x ∈ V}
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is linearly independent.

Proof. Suppose S ⊆ V is linearly independent and suppose

a1y1 + a2y2 + · · ·+ anyn = 0

where y1, y2, . . . , yn are distinct elements of T (S). By definition of T (S), we can find
elements x1, x2, . . . , xn of S such that

y1 = T (x1), y2 = T (x2), . . . , yn = T (xn).

Note that the elements x1, x2, . . . , xn are necessarily distinct since xi = xj implies
yi = T (xi) = T (xj) = yj and we know the y1, y2, . . . , yn are distinct.

Because
0 = a1y1 + a2y2 + · · ·+ anyn

= a1T (x1) + a2T (x2) + · · ·+ anT (xn)

= T (a1x1 + a2x2 + · · ·+ anxn),

we see that a1x1 + a2x2 + · · · + anxn ∈ N(T ). Since T is one-to-one, we know from
Theorem 2.4 that N(T ) = {0} and therefore that

a1x1 + a2x2 + · · ·+ anxn = 0.

Since S is linearly independent by hypothesis, we conclude that a1 = a2 = · · · =
an = 0.

Because a1y1+a2y2+ · · ·+anyn was, at the outset, an arbitray linear combination
of elements of T (S), we conclude that T (S) is linearly independent.

For the converse of part (a), we only need to consider when S has only one
element.

Theorem A2. Suppose T : V → W is a linear transformation. If for any
linearly independent one element set {x} ⊆ V, the set {T (x)} is also linearly inde-
pendent, then T is one-to-one.

Proof. First note that, by Theorem 2.4, T is one-to-one exactly when N(T ) = {0}
or, equivalently, when N(T ) ⊆ {0} since we always have {0} ⊆ N(T ).

To say that {x} is linearly independent simply means that x is nonzero. Similarly,
to say that {T (x)} is linearly independent simply means that T (x) is nonzero. So
the statement of Theorem A2 simply says that if x is nonzero then T (x) is nonzero
too. Looking at the contrapositive, this is equivalent to saying that if T (x) = 0 then
x = 0 or, in other words, that N(T ) ⊆ {0}. Therefore, for any linearly independent
one element set {x} ⊆ V, the set {T (x)} is also linearly independent, then T is
one-to-one.
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For part (b), it may seem at first that this is the same as in part (a), but the two
statements are actually quite different. We first deal with the case where the set S
is finite.

Theorem B1. Suppose T : V→ W is a one-to-one linear transformation. A set
{x1, x2, . . . , xn} ⊆ V is linearly independent if and only if {T (x1), T (x2), . . . , T (xn)} ⊆
W is linearly independent.

Proof. The key fact is that if a1, a2, . . . , an are any scalars then

T (a1x1 + a2x2 + · · ·+ anxn) = a1T (x1) + a2T (x2) + · · ·+ anT (xn).

For the forward implication, we see that if

a1T (x1) + a2T (x2) + · · ·+ anT (xn) = 0

then
a1x1 + a2x2 + · · ·+ anxn ∈ N(T ).

By Theorem 2.4, N(T ) = {0} since T is one-to-one. So,

a1T (x1) + a2T (x2) + · · ·+ anT (xn) = 0

implies
a1x1 + a2x2 + · · ·+ anxn = 0.

Therefore, if {x1, x2, . . . , xn} is linearly independent, we must then have a1 = a2 =
· · · = an = 0. Since this is true for any scalars a1, a2, . . . , an, we conclude that if
{x1, x2, . . . , xn} is linearly independent then so is {T (x1), T (x2), . . . , T (xn)}.

For the backward implication, we see that if

a1x1 + a2x2 + · · ·+ anxn = 0

then
a1T (x1) + a2T (x2) + · · ·+ anT (xn) = 0.

Therefore, if {T (x1), T (x2), . . . , T (xn)} is linearly independent, we must then have
a1 = a2 = · · · = an = 0. Since this is true for any scalars a1, a2, . . . , an, we conclude
that if {T (x1), T (x2), . . . , T (xn)} is linearly independent then so is {x1, x2, . . . , xn}.

3



For the general case, note that a (possibly infinite) set of vectors is linearly
independent if and only if every finite subset of it is linearly independent. This is
because a linear dependency only involves finitely many vectors from a given set. So if
the finite set of vectors involved in a given linear dependency is linearly independent,
then that linear dependency must be the trivial one.

Theorem B2. Suppose T : V→ W is a one-to-one linear transformation. A set
S ⊆ V is linearly independent if and only if T (S) ⊆ W is linearly independent.

Proof. By Theorem B1, a finite set {x1, x2, . . . , xn} ⊆ S is linearly independent if
and only if the corresponding finite set {T (x1), T (x2), . . . , T (xn)} ⊆ T (S) is linearly
independent. Therefore, every finite subset of S is linearly independent if and only
if every finite subset of T (S) is linearly independent. By the observation above, we
conclude that S is linearly independent if and only if T (S) is linearly independent.

Theorem C. Suppose T : V → W is a one-to-one and onto linear transforma-
tion. Then {v1, v2, . . . , vn} is a basis for V if and only if {T (v1), T (v2), . . . , T (vn)} is
a basis for W.

Proof. By Theorem B1, we know that {v1, v2, . . . , vn} is linearly independent if and
only if {T (v1), T (v2), . . . , T (vn)} is linearly independent. So it suffices to show that
(1) if {v1, v2, . . . , vn} is a basis for V then {T (v1), T (v2), . . . , T (vn)} generates W, and
that (2) if {T (v1), T (v2), . . . , T (vn)} is a basis for W then {v1, v2, . . . , vn} generates
V.

Suppose first that {v1, v2, . . . , vn} is a basis for V. By Theorem 2.2, R(T ) =
span{T (v1), T (v2), . . . , T (vn)}. Since T is onto, we also have R(T ) = W. Therefore,
we conclude that span{T (v1), T (v2), . . . , T (vn)} generates W.

Suppose next that {T (v1), T (v2), . . . , T (vn)} is a basis for W. Given any x ∈ V,
we can find scalars a1, a2, . . . , an such that

T (x) = a1T (v1) + a2T (v2) + · · ·+ anT (vn) = T (a1v1 + a2v2 + · · ·+ anvn).

Since T is one-to-one, we conclude that

x = a1v1 + a2v2 + · · ·+ anvn

and therefore x ∈ span{v1, v2, . . . , vn}. Since x was an arbitrary vector in V, we
conclude that {v1, v2, . . . , vn} generates V.
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§2.1:21 To see that T is onto, given a target sequence (b1, b2, . . . ) ∈ V, note that
the sequence

(a1, a2, . . . ) = U(b1, b2, . . . ) = (0, b1, b2, . . . )

has the property that

T (a1, a2, . . . ) = (a2, a3, . . . ) = (b1, b2, . . . ).

To see that U is one-to-one, suppose (a1, a2, . . . ), (b1, b2, . . . ) ∈ V are such that

(0, a1, a2, . . . ) = U(a1, a2, . . . ) = U(b1, b2, . . . ) = (0, b1, b2, . . . ).

This holds precisely when

0 = 0, a1 = b1, a2 = b2, . . .

Since 0 = 0 is simply true, this means (a1, a2, . . . ) = (b1, b2, . . . ). We have thus shown
that

U(a1, a2, . . . ) = U(b1, b2, . . . ) implies (a1, a2, . . . ) = (b1, b2, . . . ),

i.e., that U is one-to-one.
Also note that since TU = IV, the fact that T is onto and the fact that U is

one-to-one follow from the Theorem on ‘One-to-One, Onto, and Inverses’ from the
April 16 slides.

§2.2:5bde For (b), since

T (1) =

(
0 2
0 0

)
, T (x) =

(
1 2
0 0

)
, T (x2) =

(
0 2
0 2

)
,

we see that

[T ]αβ =


0 1 0
2 2 2
0 0 0
0 0 2

 .

For (d), since
T (1) = 1, T (x) = 2, T (x2) = 4,

we see that
T γβ =

(
1 2 4

)
.

5



For (e), since

A = (1)E11 + (−2)E12 + (0)E21 + (4)E22,

we see that

[A]α =


1
−2
0
4

 .

§2.2:8* Theorem. Let V be an n-dimensional vector space with an ordered basis
β = {v1, v2, . . . , vn}. The function T : V → F n defined by T (x) = [x]β is a linear
transformation.

Proof. We need to check that T (x + y) = T (x) + T (y) and T (cx) = cT (x) for all
x, y ∈ V and all scalars c.

Given x, y ∈ V, write

T (x) = (a1, a2, . . . , an) and T (y) = (b1, b2, . . . , bn),

so that
x = a1v1 + a2v2 + · · ·+ anvn

and
y = b1v1 + b2v2 + · · ·+ bnvn.

Since
x+ y = (a1v1 + a2v2 + · · ·+ anvn) + (b1v1 + b2v2 + · · ·+ bnvn)

= (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (an + bn)vn,

we see that

T (x+ y) = (a1 + b1, a2 + b2, . . . , an + bn) = T (x) + T (y).

Similarly, given any scalar c, we have

cx = (ca1)v1 + (ca2)v2 + · · ·+ (can)vn

and so
T (cx) = (ca1, ca2, . . . , can) = cT (x).

Therefore, T : V→ F n is indeed a linear transformation.
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§2.2:10 Since
(2, 3) = −(0, 1) + 3(1, 1),

we see that

T (2, 3) = −T (0, 1) + 3T (1, 1) = (−1,−4) + (6, 15) = (5, 11).

To see wether T is one-to-one, we can compute N(T ) and use Theorem 2.4. First,
note that

T (a, b) = T ((a− b)(1, 0) + b(1, 1))

= (a− b)(1, 4) + b(2, 5) = (a+ b, 4a+ b).

Therefore T (a, b) = (0, 0) exactly when a+ b = 0 and 4a+ b = 0. The only solution
to these equations is when a = b = 0, and thus N(T ) = {(0, 0)}. It follows from
Theorem 2.4 that T is one-to-one.

§2.3:3 (a) Since

U(1) = (1, 0, 1), U(x) = (1, 0,−1), U(x2) = (0, 1, 0),

we see that

[U ]γβ =

1 1 0
0 0 1
1 −1 0

 .

Since
T (1) = (0)(3 + x) + 2(1) = 2,

T (x) = (1)(3 + x) + 2(x) = 3x+ 3,

T (x2) = (2x)(3 + x) + 2(x2) = 4x2 + 6x,

we see that

[T ]β = [T ]ββ =

2 3 0
0 3 6
0 0 4

 .

Since

UT (1) = (2, 0, 2), UT (x) = (6, 0, 0), UT (x2) = (6, 4,−6),

we see that

[UT ]γβ =

2 6 6
0 0 4
2 0 −6

 .
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Indeed, we can check that2 6 6
0 0 4
2 0 −6

 =

1 1 0
0 0 1
1 −1 0

2 3 0
0 3 6
0 0 4

 .

(b) We have [h(x)]β = (1,−2, 1) and [U(h(x))]γ = U(h(x)) = (1, 1, 3). Indeed, we
can check 1

1
3

 =

1 1 0
0 0 1
1 −1 0

 1
−2
1

 .

§2.3:4bd For (b), we have from above that

[T ]αβ =


0 1 0
2 2 2
0 0 0
0 0 2

 .

Therefore, by Theorem 2.14,

[T (4− 6x+ 3x2)]α = [T ]αβ [4− 6x+ 3x2]β

=


0 1 0
2 2 2
0 0 0
0 0 2


 4
−6
3

 =


−6
2
0
6

 .

For (d), we have from above that

[T ]γβ =
(
1 2 4

)
.

Therefore, by Theorem 2.14,

[T (6− x+ 2x2)]γ = [T ]γβ[6− x+ 2x2]β

=
(
1 2 4

) 6
−1
2

 =
(
12
)
.
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§2.3:11* Theorem. If V is a vector space and T : V→ V is a linear transforma-
tion, then T 2 = T0 if and only if R(T ) ⊆ N(T ).

Proof. First, we will show that if R(T ) ⊆ N(T ) then T 2 = T0. Given an arbitrary
x ∈ V, we have T (x) ∈ R(T ) by definition. Since R(T ) ⊆ N(T ), we also have
T (x) ∈ N(T ). By definition, this means that T (T (x)) = 0, or T 2(x) = 0 for short.
We therefore conclude that T 2(x) = 0 for every x ∈ V, which means that T 2 = T0.

Next, we will show that if T 2 = T0 then R(T ) ⊆ N(T ). By definition, y ∈ R(T )
means that y = T (x) for some x ∈ V. Since T 2 = T0, we see that for any such y, we
have

T (y) = T (T (x)) = T0(x) = 0,

and hence y ∈ N(T ). We therefore conclude that every element of R(T ) is an element
of N(T ), equivalently that R(T ) ⊆ N(T ).
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