
Homework Notes — Week 2

Math 24 — Spring 2014

§1.4:12* Remember to use theorems (and to correctly reference them). Proving
everything from scratch every time takes a lot of time and effort!

In this case, the inclusion W ⊆ span(W) is an immediate consequence of The-
orem 1.5. The reverse inclusion span(W) ⊆ span(W) says, after unpacking the
definition of span(W), that a the subspace W is closed under linear combinations.
Stated this way, this is a consequence of Theorem 1.3.

A very careful proof of that a subspace W is closed under linear combinations
would proceed by induction on the length n ≥ 1 of the linear combination

a1w1 + a2w2 + · · ·+ anwn.

Base Case (n = 1). If w1 ∈ W and a1 is any scalar, then a1w1 ∈ W since W is
closed under scalar multiplication by Theorem 1.3.

Induction Step (n→ n + 1). Suppose we know that W is closed under linear com-
binations of length n. (This is the Induction Hypothesis.) Suppose we have
vectors w1, . . . , wn, wn+1 from W and scalars a1, . . . , an, an+1. We want to show
that

a1w1 + · · ·+ anwn + an+1wn+1

is in W. By the induction hypothesis, we know that

w = a1w1 + · · ·+ anwn

is in W. We also know that an+1wn+1 is in W by Theorem 1.3(c). By Theo-
rem 1.3(b), we see that w + an+1wn+1 is in W. Since

w + an+1wn+1 = a1w1 + · · ·+ anwn + an+1wn+1,

we see that this linear combination of length n + 1 is indeed in W.

Because w1, . . . , wn, wn+1 were arbitrary elements of W and a1, . . . , an, an+1

were arbitrary scalars, we conclude that W is closed under linear combinations
of length n + 1.
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By the principle of mathematical induction, it follows that W is closed under linear
combinations of any length.

§1.5:17* The most common approach to this problem was a proof by induction
on n. Another way to solve this problem is to use Theorem 1 from the April 4 work-
sheet, observing that the i-th column couldn’t be a linear combination of previous
columns since its i-th entry is nonzero but the i-th entry is zero in all previous
columns is zero because the matrix is upper triangular.

§1.6:11* We can split this into two theorems.

Theorem 1. If {u, v} is a two element basis for V and a is a nonzero scalar, then
{u + v, au} is also a basis for V.

Proof. We first show that {u+v, au} generates V. Given any x ∈ V, there are scalars
x1, x2 such that x = x1u + x2v. Then

x = x2(u + v) + (x1 − x2)u = x2(u + v) +
x1 − x2

a
(au)

shows that x is indeed a linear combination of the set {u + v, au}.
We now show that {u + v, au} is linearly independent. Given any scalars x1, x2,

x1(u + v) + x2(au) = (x1 + ax2)u + x1v.

Since u 6= v and {u, v} is linearly independent, we conclude that if x1(u+v)+x2(au) =
0 then x1 = 0 and x1 + ax2 = 0. Since a 6= 0, the only possibility in this case is that
x1 = x2 = 0. Therefore, {u + v, au} is linearly independent.

Since {u + v, au} is linearly independent and generates V, it is a basis for V.

Theorem 2. If {u, v} is a two element basis for V and a, b are a nonzero scalars,
then {au, bv} is also a basis for V.

Proof. By Theorem 1.8, it is sufficient to show that every element of V has a unique
representation as a linear combination of {au, bv}.

Since {u, v} is a basis for V, we know that for every x ∈ V, there are unique
scalars x1, x2 such that x = x1u + x2v. It follows that

x =
x1

a
(au) +

x2

b
(bv)
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is a linear combination of {au, bv}. Furthermore, this is the unique such linear com-
bination for if

x = y1(au) + y2(bv) = (ay1)u + (by2)v,

then we must have ay1 = x1 and by2 = x2.
It follows from Theorem 1.8 that {au, bv} is indeed a basis for V.

§1.6:14 When you asked to find a basis for a space W, it is necessary to justify
that your proposed basis is indeed a basis for W. In this case, the dimensions of W1

and W2 are not known in advance, so we have to prove that our proposed basis does
span the given space and that it is linearly independent.

The vectors in W1 are precisely those (a1, a2, a3, a4, a5) ∈ F 5 such that a1 =
a3 + a4. Each such vector is of the form

a3 + a4
a2
a3
a4
a5

 = a2


0
1
0
0
0

 + a3


1
0
1
0
0

 + a4


1
0
0
1
0

 + a5


0
0
0
0
1

 .

The vectors {e2, e1 + e3, e1 + e4, e5} are easily checked to be linearly independent.
Indeed,

0 = pe2 + q(e1 + e3) + r(e1 + e4) + se5 = (p + r)e1 + pe2 + qe3 + re4 + se5

can only happen if p = q = r = s = 0. Therefore {e2, e1 + e3, e1 + e4, e5} is a basis
for W1 and it follows that dim(W1) = 4.

The vectors in W1 are precisely those (a1, a2, a3, a4, a5) ∈ F 5 such that a1 =
−a5, a2 = a4, a3 = a4 Each such vector is of the form

−a5
a4
a4
a4
a5

 = a4


0
1
1
1
0

 + a5


−1
0
1
0
1

 .

The vectors in {e2 + e3 + e4,−e1 + e5} are easily checked to be linearly independent.
Indeed,

0 = p(e2 + e3 + e4) + q(−e1 + e5) = −qe1 + pe2 + pe3 + pe4 + qe5

can only happen if p = q = 0. Therefore {e2 + e3 + e4,−e1 + e5} is a basis for W2

and it follows that dim(W2) = 2.
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§1.6:16 I claim that the upper triangular n× n matrices have basis

{Eij : 1 ≤ i ≤ j ≤ n},

where Eij are defined in Example 3 of Section 1.6 (where m = n).
From Example 3 in Section 1.6, we know that the larger set {Eij : 1 ≤ i, j ≤ n}

is a basis for Mn×n(F ). Since every subset of a linearly independent set is linearly
independent, our proposed basis is linearly independent.

To see that it generates all upper triangular n × n matrices, first note that if A
is any n× n matrix, then

A =
n∑

i=1

n∑
j=1

aijE
ij.

If A is upper triangular, aij = 0 when i < j and so

A =
n∑

i=1

n∑
j=i

aijE
ij.

This shows that every upper triangular matrix is a linear combination of elements
from our proposed basis. Since every element of our proposed basis is upper trian-
gular, we conclude that the span of our proposed basis is indeed the space of upper
triangular matrices.

Our basis contains n elements with i = 1, n − 1 elements with i = 2, . . . , 2
elements with i = n− 1, and 1 element with i = n. So the dimension of the space of
upper triangular matrices is

n + (n− 1) + · · ·+ 2 + 1 =
n(n + 1)

2
.

4


