
Homework Notes — Week 1

MATH 24 — SPRING 2014

§1.2#9* The most common error for this problem was to use Theorem 1.1 in a
non-literal manner. Theorem 1.1 gives only one of the four possible cancellation
laws:

1. If x+ z = y + z then x = y.

2. If z + x = z + y then x = y.

3. If x+ z = z + y then x = y.

4. If z + x = y + z then x = y.

To obtain the other laws, you need to use commutativity (VS 1). Since this section
of the book is about use of the rules (VS 1–8), it is important to mention each use
of these rules!

To avoid repetition, you can state and prove the relevant fact and reference that
instead:

A useful corollary of Theorem 1.1 is the following.

Corollary 0. If x, y and z are vectors in a vector space V such that
z + x = z + y, then x = y.

Proof. By applying (VS 1) to both sides of z + x = z + y, we obtain
x+ z = y + z and then x = y follows by Theorem 1.1.

After then, you can freely use Corollary 0 in your proofs. (I called the result Corol-
lary 0 to emphasize that this result does not depend on Corollary 1 nor Corollary 2,
so it is not circular to use it in these proofs.)

After section 1.2, it is no longer necessary to mention every use of the rules
(VS 1–8) since they are no longer the main topic of discussion. You can freely
use commutativity and associativity of addition without pointing out this fact every
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time. However, you still need to mention them when they are key elements of
discussion, such as when proving that something is a vector space from scratch (as
in Theorem 2.7(b), for example).

§1.2#18 For this problem, keep in mind that

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2)

is now the definition of “+” and the usual addition is not meaningful in the context
of this problem.

In addition to counterexamples for (VS 1–8), a counterexample for any property
which is known to hold in all vector spaces can be used as a way to show that this
V is not a vector space. For example, in any vector space we have that

2x = (1 + 1)x = 1x+ 1x = x+ x

holds for every vector x, but in V we have

2(a1, a2) = (2a1, 2a2) and (a1, a2) + (a1, a2) = (3a1, 4a2).

Choosing a1 = a2 = 1, say, gives a counterexample.

§1.3#10 To show that W1 is a subspace, you need to prove all three criteria of
Theorem 1.3. To make sure your proofs are complete, it can be helpful to restate
them as theorems.

Theorem. If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are in W1, then the
sum (a1, a2, . . . , an) + (b1, b2, . . . , bn) is also in W1.

Even if you only do this as a mental exercise and you write your argument in a more
succinct way, it will help you remember to properly introduce your notation and to
include all steps (such as properly expanding definitions) which are necessary for
a complete proof. Here is an example where I omitted the statement above and
replaced it by a reference to Theorem 1.3(b).

To see that condition (b) of Theorem 1.3 holds for W1, suppose that
(a1, . . . , an) and (b1, . . . , bn) are in W1. Then, by definition of W1,

a1 + · · ·+ an = 0 = b1 + · · ·+ bn.
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Therefore,

(a1 + b1) + · · ·+ (an + bn) = (a1 + · · ·+ an) + (b1 + · · ·+ bn) = 0,

which shows that the sum

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

is also in W1.

§1.3#13 The main difficulty for this problem is understanding what this space
F(S, F ) actually is. This is an important example to understand since the majority
of vector spaces used in mathematics are subspaces of F(S,R) or F(S,C), for
some choice of set S.

The vectors in the space F(S, F ) are all possible functions f : S → F, i.e.,
all possible ways to assign values in F to every point of the set S. For example,
F(R,R) contains most of the functions f : R→ R from calculus, such as

f(x) = x2, g(x) = sin(x), and h(x) = ex.

In the general case, S can be any fixed set, such as

R, Z, [0, 1], {1, 1/2, 1/3, . . . },

and even sets of things other than numbers such as

{Ann,Bob,Sue,Zak}.

The subspace in question

W = {f ∈ F(S, F ) : f(s0) = 0}

consists of all functions f : S → F that take the value 0 at the designated point s0
of S. The point s0 is arbitrary but it is a fixed element of S. For example, we could
have S = F = R as above and s0 = π, in which case sin(x) would be in W but
cos(x) would not be in W.

Now that we understand what F(S, F ) and W consist of, it is easy to check the
three properties of Theorem 1.3:

(a) The zero element ofF(S, F ) is the constant function with value 0.
Since this function takes value 0 at every point of S, in particular
at s0, it does belong to W.
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(b) If f, g are functions in W then f(s0) = 0 = g(s0). Therefore

(f + g)(s0) = f(s0) + g(s0) = 0 + 0 = 0,

which shows that the sum f + g is in W too.

(c) If f is a function in W then f(s0) = 0. Therefore, if c ∈ F is any
scalar, then

(cf)(s0) = c(f(s0)) = c0 = 0,

which shows that the scalar product cf is in W too.

§1.3#19* Since this is an equivalence, we need to prove two implications:

• If W1 ⊆ W2 or W2 ⊆ W1 then W1 ∪W2 is a subspace.

• If W1 ∪W2 is a subspace then W1 ⊆ W2 or W2 ⊆ W1.

The first is clear since W1 ∪W2 = W2 in the first alternative and W1 ∪W2 = W1 in
the second alternative.

For the second implication, it is easier to prove the contrapositive: if W1 * W2

and W2 * W1 then W1 ∪W2 is not a subspace, in fact this set is not closed under
addition. To show this we need to find two vectors x1, x2 ∈ W1 ∪ W2 such that
x1 + x2 /∈ W1 ∪ W2. To achieve this goal x1, x2 can’t both be in W1 (for then
x1 + x2 ∈ W1 too) nor can they both be in W2 (for then x1 + x2 ∈ W2 too). So we
must choose x1, x2 very carefully.

The two hypotheses W1 * W2 and W2 * W1 give us a clue how to pick x1, x2.
The hypothesis W1 * W2 tells us that there is an x1 ∈ W1 such that x1 /∈ W2.
Similarly, the hypothesis W2 * W1 tells us that there is an x2 ∈ W2 such that
x2 /∈ W1. Any two such vectors are as required: x1 + x2 /∈ W1 ∪W2. To see this,
we need to show that it is impossible that either x1 + x2 ∈ W1 or x1 + x2 ∈ W2. If
x1 + x2 ∈ W1 then

x2 = (−x1) + (x1 + x2) ∈ W1

since −x1 ∈ W1; this contradicts the fact that x2 /∈ W1. Similarly, x1 + x2 ∈
W2 leads to a contradiction of the fact that x1 /∈ W2. We therefore conclude that
x1 + x2 /∈ W1 ∪W2.
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