Math 24
Spring 2012
Sample Homework Solutions
Week 9

Section 6.3

(2.) Find a vector y such that g(z) = (z,y) for all x € V.

(b) V =C? and g(21,22) = 21 — 225.

y=(1,-2).

(3.) Evaluate T* at the given vector in V.

(b) V =C2% T(z1,22) = (221 + 022, (1 —i)21), . = (3 — 4,1 + 24).
T*(z1,22) = (221 4 (i + 1) 29, (—0)21); T*(3 — 4,1 4+ 2i) = (5 + i, —1 — 3i).

(12.) Let V' be an inner product space, and T a linear operator on T
Prove:

(a) R(T*)* = N(T).

Suppose w € R(T*) and v € V are arbitrary. By assumption, we can
write w = T*(u) for some uw € V. Then, by the definition of T*, we have

<U’w> = <U3T*<u)> = <T(U)7u> :

If v € N(T), then T'(v) = 0, and so, by the above equation, (v,w) = 0
for all w € R(T*). That is, v € R(T*)*. This shows N(T) C R(T*)*.

Conversely, suppose that v € R(T*). Then (v, w) = 0 for all w € R(T*),
and so, by the above equation, (T'(v),u) = 0 for all w € V. This can only
happen if T'(v) = 0, that is, v € N(T'). This shows R(T*)* C N(T).

(b) If V is finite-dimensional, then R(T*) = N(T)*.

By part (a), all vectors in R(T™) are orthogonal to all vectors in N(7'),
and so R(T*) C N(T)*.



By Theorem 6.7(c), and part (a), dim(R(T*)) = V — dim(R(T*)*') =
V — dim(N(T)); by Theorem 6.7(c), dim(N(T)* =V — dim(N(T)).

Now we have R(T*) C N(T)*, and R(T*) and N(T)* have the same
finite dimension. Therefore, they must be equal.

(20.) Use the least squares approximation to find the best fit for this set
of data with both a linear function and a quadratic function; compute the
error E in both cases.

(a) {(_3’ 9)7 (_276)7 (072)7 (1’ 1>}

For a linear function, we want the function y = ct 4+ d that best fits this
data; that is, we want the closest possible approximation x = x( to a solution
to the equation Az = y:

-3 1 9
-2 1 cy |6
OEE
1 1 1

The error will be E = ||y — Axo||*.
By our general method, our solution is zg = (A*A)~"*A*y. Since we are

working over R, A* = A!, and we can compute A*A = (144 j), (A*A)~ ! =

L (2 2
20\2 7)

9
c\ 1 (2 2\/=3 =201 61 (-2
(d)‘%(Q 7)(1 11 1) 2 _(2.5>’
1
our best linear approximation to this data is y = —2t 4+ 2.5, and the error is
9 31 2
6 -2 1 (—2) _
2 0 1 2.5 '
1 1 1



For a quadratic function, our equation Az = y is

9 -3 1 9
4 -2 1 |6
0 0 1 2‘2
11 1 1

The best quadratic approximation is y = %tz - %t + 2 and the error is 0.
Section 6.4

(2.) For each linear operator 7', determine whether 7" is normal, self-
adjoint, or neither. If possible, find an orthonormal basis of eigenvectors,
and give the corresponding eigenvalues.

(b) V =R? and T'(a,b) = (2a — 2b, —2a + 5b).

The matrix of T"in the standard basis is <_22 5 | which is self-adjoint,

so T is self-adjoint. We compute the eigenvalues, 1 and 6, and corresponding
eigenvectors, (2,1) and (1, —2) respectively, and check that they are in fact
orthogonal. An orthonormal basis of eigenvectors is {%(2, 1), \/Tg(l, —2)}.

(d) V = Py(R) and T'(f) = f’; the inner product is (f, g) = fol f(t)g(t)dt.

First, we use Gram-Schmidt to find an orthonormal basis relative to this
inner product, and get § = {1,2\/§x — V/3,6V52% — 6vbx + \/5} The
0 2v3 0

matrix of 7" in this basisis |0 0  24/15 |, which we can check is neither
0 0 0

(= 3)

The matrix of T in the standard basis is

self-adjoint nor normal.

(f) V = Mays(R) and T (Z Z)

, which is self-

0 0 1
O) and (0 1), and

O = O O

o O O
o O O
S O = O

[

adjoint. The eigenvalues are 1, with eigenvectors (

3



and 01 . An orthonormal basis of

1 0
-1 0 0 —1
eigenvectors is {\/75 G 8) , \/75 (8 D ’ \/75 (_11 8) ’ \/75 (8 _11>}

(9.) Let T be a normal operator on a finite-dimensional inner product
space V. Prove that N(T') = N(T*) and R(T') = R(T™).

—1, with eigenvectors

By Theorem 6.15(a), ||T'(x)|| = ||T*(x)|| for all € V. Therefore, we
have

v e N(T) < T(z)=0 < [|T(z)]| =0 < ||T*(@)]|=0 < T"(z) =0 < z € N(T*)

Therefore N(T) = N(T%).

By 6.3 exercise (12), R(T*) = N(T)*. Since if T is normal, T* is also, 6.3
exercise (12) applies to T*, and we have R(T) = R(T**) = N(T*)*. Since
N(T) = N(T*), we have R(T) = N(T*)* = N(T)*+ = R(T").

Section 6.5

(2.) For each matrix A, find a unitary or orthogonal matrix P and a
diagonal matrix D such that P*AP = D.

(b) A = <(1) _01) The eigenvalues of A are i, with eigenvector (i, 1),

and —i, with eigenvector (1,7). An orthonormal basis of eigenvectors is

f. \[ \[ \[ o 1 O o =1 -
{(722, 72), (72,722)} D = (0 —Z)’ and P = (\2/_5 L%Z>
2 2

(5.) Are these matrices unitarily equivalent?

No. Unitarily equivalent matrices must be similar, and similar matrices
have the same determinant; these matrices do not have the same determinant.

Section 6.6



(2.) Compute the matrix of 7" in the standard basis 3, where T is the
orthogonal projection of V on W, if V = R? and W = span({(1,2)}), and if
V =R3 and W = span({(1,0,1)})

To find T'(e;) where W = span({w}), find the orthogonal projection of e;
€;, W

—~
~~

onto the vector w, which is w.
(w, w)
1 2
In the first case, [T]5 = (2 2)
5 5
1 1
5 03
In the second case, [T]g= 0 0 0
1 1
3 0 3

(3.) For the corresponding matrix A in 6.5 exercise (2), verify that L4 has
a spectral decomposition, for each eigenvalue explicitly define the projection
onto the corresponding eigenspace, and use the spectral theorem to verify
the result.

(b) We can check to see that AA* = A*A, so A is normal, and has
a spectral decomposition (over C). An orthonormal basis of eigenvectors is

{(iz Y2y (V2 V2 )} The projection of (1,0) onto the eigenvector (il i)

172 2772
S <(1,0), (ﬁz £)> (ii, ‘/75) = (3, —31) and the projection of (0,1) onto
the eigenvector (ﬁz i) <(0 1), (\f i, §)> (\2[ i, ‘2[) (37, 3), so the ma-

101
trix of the orthogonal projection onto F; in the standard basis is (_21 ; 2;) ,
2t 2
and the projection is Tj(a,b) = (3a + 3ib, —%ia + 3b).
Similarly, the projection onto E_; is T_;(a,b) = Ti(a,b) = (3a— ib, Jia+
b).
To verify this using the spectral theorem, we need to check that L, = ¢T;+
(—i)T-;, or that TL4(a,b) = i(3a+ 3ib, —3ia+ 3b) + (—i)(5a— 3ib, 3ia+ 3b).
This is true.
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