1. (10) Let V and W be vector spaces over a field F, and let $T: V \rightarrow W$ be a linear transformation. Give each of the terms below a precise mathematical definition.
(a) Define what is meant by the range of T.
(b) Define what is meant by saying that S is an inverse (function) to T. Caution: do not characterize conditions under which S exists, but define what it means to be an inverse function.
2. (15) Let V and W be finite-dimensional vector spaces over a field F, and let
$T: V \rightarrow W$ be a linear transformation. Suppose that $\operatorname{dim} V>\operatorname{dim} W$. Characterize each of the following statements by using one of the following terms: always, never, or sometimes. For each answer of always or never, give a brief argument justifying your response; for each answer of sometimes, give two examples - one showing where the condition holds, and one showing where it does not.
(a) T is one-to-one (injective)
(b) T is onto (surjective)
3. (25) (Short Answer)
(a) Let $V=P_{2}(\mathbb{R})$, and let $T: V \rightarrow V$ be the linear map defined by $T(f)=f+f^{\prime}$ (f^{\prime} is the first derivative). Find the matrix of T with respect to the ordered basis $\left\{1, x, x^{2}\right\}$ of V.
(b) Suppose that V and W are vector spaces over a field F, with ordered bases $\mathcal{B}_{V}=\left\{v_{1}, v_{2}\right\}$ and $B_{W}=\left\{w_{1}, w_{2}\right\}$ respectively. Let $T: V \rightarrow W$ be a linear transformation such that $[T]_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. If $v=3 v_{1}-2 v_{2}$, express $T(v)$ as a linear combination of w_{1} and w_{2}.
(c) Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation, and that with respect to the standard basis \mathcal{B}, T has matrix $[T]_{\mathcal{B}}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$. Find $T(1,0,3)$.
(d) Suppose that the matrix $A \in M_{3 \times 4}(\mathbb{R})$ has row-reduced echelon form $\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. Is the vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ in $R\left(L_{A}\right)$? (Briefly justify your answer)
(e) Let V, W and Z be vector spaces over a field F, and let $T: V \rightarrow W$ and $S: W \rightarrow Z$ be linear maps. Suppose that $S T$ is one-to-one. You showed for homework that T must be one-to-one. Show by example that S need not be one-to-one.

Math 24
 22 February 2001
 Second Hour Exam
 (In class part)

NAME (Print!):

Problem	Points	Score
1	10	
2	15	
3	25	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	100	

