1. (10) Let V be a finite dimensional vector space and S a nonempty (but not necessarily finite) subset of V.
(a) Define what it means for the set S to be linearly dependent.
(b) Define what is meant by a basis for V. (Be sure to define any mathematical terms you use in your definition which originate in this course).
2. (40) Modified True/False. Circle the correct response (True or False). Then, if true, give a brief explanation; if false, give a counterexample. Remember, true means true in all cases.

T $\quad \mathbf{F} \quad$ Let S and T be nonempty subsets of a vector space V. If T is a linearly dependent subset of V and $S \subseteq T$ then S is linearly dependent.
$\mathbf{T} \quad \mathbf{F} \quad$ If V is an n-dimensional vector space, then every set of $n+1$ nonzero vectors in V spans V.
$\mathbf{T} \quad \mathbf{F} \quad$ Let V be a finite-dimensional vector space, W a subspace of V, and $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V. Then there is a subset $S \subseteq \mathcal{B}$ whose span is W.
(Problem 2 continued)
T $\quad \mathbf{F} \quad$ Let V be a finite-dimensional vector space of dimension n. Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ and $T=\left\{w_{1}, \ldots, w_{n}\right\}$ be two linearly independent subsets of V. Then $\operatorname{Span}(S)=$ $\operatorname{Span}(T)$.
$\mathbf{T} \quad \mathbf{F} \quad$ If U and W are distinct subspaces (i.e., $U \neq W$) of a finite-dimensional vector space V such that $\operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(V)=n$, then there is a basis $\left\{u_{1}, \ldots, u_{k}\right\}$ for U and a basis $\left\{w_{1}, \ldots, w_{n-k}\right\}$ for W, so that $\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{n-k}\right\}$ is a basis for V.

T F Let V be a 5 -dimensional vector space. Let W_{1} and W_{2} be subspaces of dimension 3 and 4 respectively. Then $W_{1} \cap W_{2} \neq\{0\}$.
(Problem 2 continued)
T $\quad \mathbf{F} \quad$ Let V be a vector space of (finite) dimension n. There exist subspaces of V of dimensions $0,1,2, \ldots, n$.

T $\quad \mathbf{F} \quad$ Let A be a nonzero matrix in $V=M_{3 \times 3}(\mathbb{R})$, and for a positive integer k, denote by A^{k} the product of A with itself k times. The set $S=\left\{A, A^{2}, A^{3}, \ldots, A^{10}\right\}$ is a linearly dependent subset of V.

Math 24
 1 February 2001
 First Hour Exam
 (In class part)

NAME (Print!):

Problem	Points	Score
1	10	
2	40	
3	10	
4	10	
5	10	
6	20	
Total	100	

