Basic Notions of Groups and Fields

First, some notation: by \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z} we mean the set of rationals, reals, integers and complexes, respectively. By \mathbb{Q}^+ , \mathbb{R}^+ we mean positive elements of \mathbb{Q} and \mathbb{R} respectively.

Definition. An **Abelian group** G is a set of objects together with an operation \boxplus so that

- for every $x, y, z \in G$ we have $(x \boxplus y) \boxplus z = x \boxplus (y \boxplus z)$
- there exists an element $0 \in G$ so that $0 \boxplus x = x$ for every $x \in G$
- for every element $x \in G$ there exists an element $y \in G$ so that $x \boxplus y = 0$
- for every $x, y \in G$, we have $x \boxplus y = y \boxplus x$.

Note: Sometimes, the identity is denoted by 1 instead of 0.

If (G, \boxplus) has all but the last property, G is merely called a **group**.

Examples. The following are examples of Abelian groups:

- (1) $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}$ with regular addition.
- (2) If $G = \{1, 2, 3, 4, 5\}$ and the operation \boxplus is defined as $x \boxplus y = \min x, y$. Here, note G is finite.

The following is a non-Abelian group:

(1) If G is the set of \mathbb{R} valued functions and \boxplus is composition.

The following are not examples of groups:

- (1) $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}$ with multiplication (why?).
- (2) The positive reals with $x \boxplus y = x^y$ (why?).

Definition. A **field** F is a set of objects together with two operations \boxplus , \boxdot so that the nonzero elements of F form an Abelian group under \boxminus (with identity 0) and that the nonzero elements of F form an Abelian group under \boxdot . Furthermore, the following distributive law has to hold:

$$x \boxdot (y \boxplus z) = x \boxdot y \boxplus x \boxdot z.$$

Examples. The following are examples of fields:

- (1) $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ with regular addition and multiplication.
- (2) R^+ , \mathbb{Q}^+ with regular addition and multiplication.
- (3) For p a prime, the numbers $\{0, 1, 2, ..., p-1\}$ with $a \boxplus b = rem_p(a+b)$ and $a \boxdot b = rem_p(ab)$ (where $rem_p(x)$ is the remainder on dividing x by p). Here, note F is finite.

The following are not fields:

- (1) The integers with regular addition and multiplication.
- (2) For n composite, the numbers $\{0, 1, 2, ..., n-1\}$ with the same operations as in the finite field except we divide by n.