MATH 24

GROUP PROBLEMS 2

Due Monday, April 12 at the beginning of class

Group Members Names:

Some common mistakes in the first homework assignment included:

- not starting sentences with words but with symbols. It's imperative that you tell the reader (me) what you're doing with the symbols.
- writing the proof up backwards. In the first problem, the one with the formula for $\sum_{i=1}^{n} i^{2}$ a lot of you started with the proposition and derived something like $0=0$. It's fine if you come up with the proof backwards, but you need to write it up forwards.
- any time you introduce a symbol you need to tell me what it is. In the second homework problem a lot of you in the inductive step said, "let $\mathrm{n}=2 \mathrm{a}+3 \mathrm{~b}$." Here it's important the $a, b \geq 0$: it wouldn't be a sum of 2's and 3's if one of them were negative. Not noticing this makes some of your proofs not one hundred percent correct.

This project is going to talk about the forward-backward method of proving things and a couple of different types of proof write-ups. You should compare what I'm doing with second common homework issue I described above.

Suppose I wanted to prove a statement of the form A implies B. For this example,

Proposition. Let the right triangle $\triangle X Y Z$ have side lengths of x and y, hypotenuse of length z and area $\frac{z^{2}}{4}$. Then $\triangle X Y Z$ is isosceles.
A is "right triangle $\triangle X Y Z$ has its hypotenuse of length z and area $\frac{z^{2} "}{4}$ and B is " $\triangle X Y Z$ is isosceles." To prove this we can attack the problems from both ends. Let A_{1} be a statement that is implied by A and B_{1} be a statement that proves B.

There are many possible A_{1} 's: using the part of A that says $\triangle X Y Z$ is a triangle lets us say $\frac{1}{2} x y=\frac{z^{2}}{4}$; the fact that $\triangle X Y Z$ is right, lets us say
$x^{2}+y^{2}=z^{2}$; the angles of $\triangle X Y Z$ add to 180 ; etc. Similarly, we let A_{i} for $i \geq 2$ be a statement implied by A_{i-1}.

There are also many possible B_{1} 's: if $x=y$, then $\triangle X Y Z$ is isosceles; if one of the acute angles measures 45 degrees, then $\triangle X Y Z$ is isosceles; etc. Similarly, we let B_{i} for $i \geq 2$ be statements that imply B_{i-1}.

How do you pick the right one of the many A_{1} 's and B_{1} 's? Sometimes it's luck, more often it's intuition, but most of the times it's common sense. If you ask the following key question: "How do I show $\triangle X Y Z$ is isosceles?" and answer it with "Show $x=y$ " then you see that you want to be using A_{i} 's and B_{i} 's that involve the lengths of the sides. You want to pick an A_{1} that seems like it should lead to a statement like B. We're trying to show something about sides so we should choose an A_{1} that involves sides. Similarly for B_{1} we want to pick something that involves sides.

Here is a full analysis of one way to prove this proposition:
A right triangle $\triangle X Y Z$ has its hypotenuse of length z and area $\frac{z^{2}}{4}$
$B \triangle X Y Z$ is isosceles
We notice that our strongest (most specific) assumption is the one about area so we use that and make our A_{1} an equality between two different ways of writing area. We also notice that we're going to be working with side lengths so we let our B_{1} be $x=y$.
A : right triangle $\triangle X Y Z$ has its hypotenuse of length z and area $\frac{z^{2}}{4}$

$$
\begin{aligned}
& A_{1}: \frac{1}{2} x y=\frac{z^{2}}{4} \\
& B_{1}: x=y
\end{aligned}
$$

$B: \triangle X Y Z$ is isosceles.
Now we note that in A_{1} we have a statement that relates x, y and z. We make A_{2} to be another such statement and hope that we can cancel. For B_{2} we ask "How can you show two numbers are equal?" and note "if $x-y=0$ then $x=y$.

A: right triangle $\triangle X Y Z$ has its hypotenuse of length z and area $\frac{z^{2}}{4}$

$$
\begin{aligned}
& A_{1}: \frac{1}{2} x y=\frac{z^{2}}{4} \\
& A_{2}: x^{2}+y^{2}=z^{2} \\
& B_{2}: x-y=0
\end{aligned}
$$

$B_{1}: x=y$
$B: \triangle X Y Z$ is isosceles.
There isn't much more backwards work we can do so we finish with the following proof:

A: right triangle $\triangle X Y Z$ has its hypotenuse of length z and area $\frac{z^{2}}{4}$
$A_{1}: \frac{1}{2} x y=\frac{z^{2}}{4}$
$A_{2}: x^{2}+y^{2}=z^{2}$
$A_{3}: \frac{1}{2} x y=\frac{x^{2}+y^{2}}{4}$
$A_{4}: x^{2}-2 x y+y^{2}=0$
$A_{5}:(x-y)^{2}=0$
$B_{2}: x-y=0$
$B_{1}: x=y$
$B: \triangle X Y Z$ is isosceles.
Note that if you were a little more adventurous with the working backwards part that A_{5} could easily have been B_{3}. You'll get better and more adventurous with this the more you practice.

A final (homework level) proof might look like
Proof. Let $\triangle X Y Z$ be as in the proposition. We prove the proposition by showing $x=y$. The area of $\triangle X Y Z$ is by assumption $\frac{z^{2}}{4}$ and by formula is $\frac{1}{2} x y$. Since the $\triangle X Y Z$ is a right triangle, the Pythagorean Theorem tells us $z^{2}=x^{2}+y^{2}$. Plugging in this last equation and doing some algebra we see the following

$$
\begin{aligned}
\frac{z^{2}}{4} & =\frac{1}{2} x y \\
\frac{x^{2}+y^{2}}{4} & =\frac{1}{2} x y \\
x^{2}+y^{2} & =2 x y \\
(x-y)^{2} & =0 .
\end{aligned}
$$

Since the only number whose square is 0 , we see that $x-y=0$ and conclude $x=y$.

Proofs in textbooks and research papers are very condensed as this following succinct proof shows:

Proof. The assumption and the Pythagorean theorem yield $x^{2}+y^{2}=2 x y$; hence $(x-y)^{2}=0$ and the triangle is isosceles as required.

Being able to prove things this succinctly is a right one earns. None of you should be proving things in this way yet.

Problems Do the following:

1. For each of the following key questions, list at least three answers:
(a) How can I show two real numbers are equal?
(b) How can I show two finite sets are equal?
2. From calculus. Suppose A is "the function f has a maximum at $x=c$." List at least two possible A_{1} 's. Suppose now that B is "the function f has a maximum at $x=c$." List at least two possible B_{1} 's.
3. Recall that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is the vector space of functions that have real inputs and outputs. Let $\mathcal{C}^{1}(\mathbb{R})$ be the subset of differentiable functions in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Recall

Definition. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a point $c \in \mathbb{R}$ if

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

is finite. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable for all $c \in \mathbb{R}$ we merely say f is differentiable.

Show that $\mathcal{C}^{1}(\mathbb{R}) \leq \mathcal{F}(\mathbb{R}, \mathbb{R})$ by answering the following
(a) What is the key question for this proof? Answer it.
(b) Write out a full analysis of the proof.
(c) Write out a homework-level proof.
(d) Write out a succinct proof.

