MATH 24 GROUP PROBLEMS 2

Due Monday, April 12 at the beginning of class

Group Members Names:

Some common mistakes in the first homework assignment included:

- not starting sentences with words but with symbols. It's imperative that you tell the reader (me) what you're doing with the symbols.
- writing the proof up backwards. In the first problem, the one with the formula for $\sum_{i=1}^{n} i^2$ a lot of you started with the proposition and derived something like 0 = 0. It's fine if you come up with the proof backwards, but you need to write it up forwards.
- any time you introduce a symbol you need to tell me what it is. In the second homework problem a lot of you in the inductive step said, "let n=2a+3b." Here it's important the $a, b \ge 0$: it wouldn't be a *sum* of 2's and 3's if one of them were negative. Not noticing this makes some of your proofs not one hundred percent correct.

This project is going to talk about the forward-backward method of proving things and a couple of different types of proof write-ups. You should compare what I'm doing with second common homework issue I described above.

Suppose I wanted to prove a statement of the form A implies B. For this example,

Proposition. Let the right triangle $\triangle XYZ$ have side lengths of x and y, hypotenuse of length z and area $\frac{z^2}{4}$. Then $\triangle XYZ$ is isosceles.

A is "right triangle $\triangle XYZ$ has its hypotenuse of length z and area $\frac{z^2}{4}$ " and B is " $\triangle XYZ$ is isosceles." To prove this we can attack the problems from both ends. Let A_1 be a statement that is implied by A and B_1 be a statement that proves B.

There are many possible A_1 's: using the part of A that says $\triangle XYZ$ is a triangle lets us say $\frac{1}{2}xy = \frac{z^2}{4}$; the fact that $\triangle XYZ$ is right, lets us say

 $x^2 + y^2 = z^2$; the angles of $\triangle XYZ$ add to 180; etc. Similarly, we let A_i for $i \ge 2$ be a statement implied by A_{i-1} .

There are also many possible B_1 's: if x = y, then $\triangle XYZ$ is isosceles; if one of the acute angles measures 45 degrees, then $\triangle XYZ$ is isosceles; etc. Similarly, we let B_i for $i \ge 2$ be statements that imply B_{i-1} .

How do you pick the right one of the many A_1 's and B_1 's? Sometimes it's luck, more often it's intuition, but most of the times it's common sense. If you ask the following **key question**: "How do I show $\triangle XYZ$ is isosceles?" and answer it with "Show x = y" then you see that you want to be using A_i 's and B_i 's that involve the lengths of the sides. You want to pick an A_1 that seems like it should lead to a statement like B. We're trying to show something about sides so we should choose an A_1 that involves sides. Similarly for B_1 we want to pick something that involves sides.

Here is a **full analysis** of one way to prove this proposition:

A right triangle $\triangle XYZ$ has its hypotenuse of length z and area $\frac{z^2}{4}$

 $B \bigtriangleup XYZ$ is isosceles

We notice that our strongest (most specific) assumption is the one about area so we use that and make our A_1 an equality between two different ways of writing area. We also notice that we're going to be working with side lengths so we let our B_1 be x = y.

A: right triangle $\triangle XYZ$ has its hypotenuse of length z and area $\frac{z^2}{4}$ A_1 : $\frac{1}{2}xy = \frac{z^2}{4}$ B_1 : x = y

 $B: \triangle XYZ$ is isosceles.

Now we note that in A_1 we have a statement that relates x, y and z. We make A_2 to be another such statement and hope that we can cancel. For B_2 we ask "How can you show two numbers are equal?" and note "if x - y = 0 then x = y.

A: right triangle $\triangle XYZ$ has its hypotenuse of length z and area $\frac{z^2}{4}$ A_1 : $\frac{1}{2}xy = \frac{z^2}{4}$ A_2 : $x^2 + y^2 = z^2$ B_2 : x - y = 0 B_1 : x = y

B: $\triangle XYZ$ is isosceles.

There isn't much more backwards work we can do so we finish with the following proof:

A: right triangle $\triangle XYZ$ has its hypotenuse of length z and area $\frac{z^2}{4}$

$$A_{1}: \frac{1}{2}xy = \frac{z^{2}}{4}$$

$$A_{2}: x^{2} + y^{2} = z^{2}$$

$$A_{3}: \frac{1}{2}xy = \frac{x^{2} + y^{2}}{4}$$

$$A_{4}: x^{2} - 2xy + y^{2} = 0$$

$$A_{5}: (x - y)^{2} = 0$$

$$B_{2}: x - y = 0$$

$$B_{1}: x = y$$

 $B: \triangle XYZ$ is isosceles.

Note that if you were a little more adventurous with the working backwards part that A_5 could easily have been B_3 . You'll get better and more adventurous with this the more you practice.

A final (homework level) proof might look like

Proof. Let $\triangle XYZ$ be as in the proposition. We prove the proposition by showing x = y. The area of $\triangle XYZ$ is by assumption $\frac{z^2}{4}$ and by formula is $\frac{1}{2}xy$. Since the $\triangle XYZ$ is a right triangle, the Pythagorean Theorem tells us $z^2 = x^2 + y^2$. Plugging in this last equation and doing some algebra we see the following

$$\frac{z^2}{4} = \frac{1}{2}xy$$
$$\frac{x^2 + y^2}{4} = \frac{1}{2}xy$$
$$x^2 + y^2 = 2xy$$
$$(x - y)^2 = 0.$$

Since the only number whose square is 0, we see that x - y = 0 and conclude x = y.

Proofs in textbooks and research papers are very condensed as this following **succinct** proof shows:

Proof. The assumption and the Pythagorean theorem yield $x^2 + y^2 = 2xy$; hence $(x - y)^2 = 0$ and the triangle is isosceles as required.

Being able to prove things this succinctly is a right one earns. None of you should be proving things in this way yet.

Problems Do the following:

- 1. For each of the following **key questions**, list at least three answers:
 - (a) How can I show two real numbers are equal?
 - (b) How can I show two finite sets are equal?
- 2. From calculus. Suppose A is "the function f has a maximum at x = c." List at least two possible A_1 's. Suppose now that B is "the function f has a maximum at x = c." List at least two possible B_1 's.
- 3. Recall that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is the vector space of functions that have real inputs and outputs. Let $\mathcal{C}^1(\mathbb{R})$ be the subset of differentiable functions in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Recall

Definition. A function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at a point $c \in \mathbb{R}$ if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

is finite. If a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable for all $c \in \mathbb{R}$ we merely say f is differentiable.

Show that $\mathcal{C}^1(\mathbb{R}) \leq \mathcal{F}(\mathbb{R}, \mathbb{R})$ by answering the following

- (a) What is the **key question** for this proof? Answer it.
- (b) Write out a **full analysis of the proof**.
- (c) Write out a **homework-level proof**.
- (d) Write out a succinct proof.