MATH 24

Book problems for Homework 2

Assigned Wednesday, March 31.
Due Friday, April 9.

Problem 12 A real valued function f defined on the real line is called an even function if $f(-t)=f(t)$. Prove that the set of even functions is a vector space with vector addition defined by $(f+g)(t)=f(t)+g(t)$ and scalar multiplication by $(c f)(t)=c f(t)$ for all $c \in \mathbb{R}$.
Problem 18 Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$ define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right) \text { and } c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right) .
$$

Is V a vector space over \mathbb{R} with these operations. Justify your answer.

