Fall 2014 MATH 24 Linear Algebra Final Exam

Name:
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Instructions:

(1) Exam time: 3 hours.
(2) There are 10 problems in this exam. Only 8 problems you choose (circle) will be graded and they are graded 5 points each.
(3) All notations are standard. Unless specified, the field of scalars is always \mathbb{R}.
(4) Problems are not ordered by their difficulty.
(5) You do not have to show every step of your calculation; for example, you do not need to show the intermediate steps for finding a reduced row echelon form, or for finding the inverse of a matrix.
(6) However, you need to explain your work to receive full credit. The correct answer alone does not guarantee full credit.

Problem 1. Find all possible values of (a, b) for which the following matrix has eigenvalue 2.

$$
\left(\begin{array}{ccc}
a & b & a+b \\
2 & 2 & 3 \\
b & 0 & a
\end{array}\right)
$$

Problem 2. Let $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis in \mathbb{R}^{3}. Let

$$
u_{1}=2 v_{1}+2 v_{2}+v_{3}, \quad u_{2}=2 v_{2}+3 v_{3}, \quad u_{3}=2 v_{1}+3 v_{2} .
$$

Show that $\gamma=\left\{u_{1}, u_{2}, u_{3}\right\}$ is also a basis, and find all vectors v in \mathbb{R}^{3} whose β coordinate agrees with γ-coordinate, i.e., $[v]_{\beta}=[v]_{\gamma}$.

Problem 3. Given a system of linear equations $A x=b$ where $\operatorname{rank}(A)=3$. We know that v_{1}, v_{2} and v_{3} are three solutions to the system where:

$$
v_{1}=(1,2,3,4)^{t}, \quad v_{2}+v_{3}=(5,6,7,8)^{t}
$$

The system may have many solutions. Find the solution which is closest to the point $(-4,0,1,0)^{t}$ with respect to the standard Euclidean distance.

Problem 4. Let T be a rotation in \mathbb{R}^{3} around the axis $(1,1,0)^{t}$ by 120° counterclockwise (by right-hand-rule). Find the matrix representation of T with respect to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Problem 5. Find all possible values of a for which the following matrix is invertible.

$$
\left(\begin{array}{cccc}
0 & 2 & 0 & 4 \\
a-1 & 3 a+2 & 3 & 3-a \\
0 & 0 & 0 & 3 \\
5 & 4 a-1 & a+1 & 2 a-1
\end{array}\right)
$$

Problem 6. Find all possible (a, b) such that the following two matrices are similar to each other.

$$
A=\left(\begin{array}{ccc}
b & 0 & 2 \\
0 & 2 & 3 \\
1 & 0 & b
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & a
\end{array}\right)
$$

Problem 7. In the space \mathbb{R}^{6}, let:

$$
\begin{gathered}
\alpha_{1}=(1,1,1,1,1,1)^{t}, \quad \alpha_{2}=(1,-1,1,-1,1,-1)^{t}, \quad \alpha_{3}=(1,0,0,1,1,0)^{t}, \\
\beta_{1}=(1,2,3,1,2,3)^{t}, \quad \beta_{2}=(1,1,2,2,1,1)^{t}, \quad \beta_{3}=(2,1,4,2,3,2)^{t} .
\end{gathered}
$$

Let $V_{1}=\operatorname{span}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $V_{2}=\operatorname{span}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$. Find bases for $V_{1}+V_{2}$ and $V_{1} \cap V_{2}$ respectively.

Problem 8. Let T be the reflection on \mathbb{R}^{3} across the plane $3 x+4 y+5 z=0$, i.e., every vector is transformed to its mirror image with respect to the "mirror" $3 x+4 y+$ $5 z=0$. Let A be the matrix representing T with respect to the standard basis. Find $\operatorname{det}(A)$. In addition, find an orthonormal basis in \mathbb{R}^{3} such that T has a diagonal matrix representation.

Problem 9. Find a matrix X such that

$$
X^{2}=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Problem 10. Find the least square approximation of the form $y=a x^{2}+b$ for the data points $(-1,1),(0,0),(1,1)$ and $(2,3)$.

This page is left blank.

