MATH 23: DIFFERENTIAL EQUATIONS WINTER 2017 PRACTICE MIDTERM EXAM PROBLEMS

Problem 1. (a) Find the general solution of the differential equation

$$
2 y^{\prime \prime}+3 y^{\prime}+y=\sin 2 t
$$

(b) What is the behavior of the solution as $t \rightarrow \infty$?

Solution. The characteristic equation for the corresponding homogeneous equation is $2 r^{2}+$ $3 r+1=0$, with roots $r_{1}=-1 / 2, r_{2}=-1$. So the general solution to the homogeneous equation is

$$
y=C_{1} e^{-t / 2}+C_{2} e^{-t} .
$$

We guess $Y=A \sin 2 t+B \cos 2 t$ as a particular solution to the nonhomogeneous equation. Plugging Y into the nonhomogeneous equation, we get

$$
(-7 A-6 B) \sin 2 t+(6 A-7 B) \cos 2 t=\sin 2 t
$$

Solving the system

$$
\begin{aligned}
& -7 A-6 B=1 \\
& 6 A-7 B=0
\end{aligned}
$$

we get $A=-7 / 85$ and $B=-6 / 85$, so the general solution to the equation is

$$
y=C_{1} e^{-t / 2}+C_{2} e^{-t}-\frac{7}{85} \sin 2 t-\frac{6}{85} \cos 2 t .
$$

As $t \rightarrow \infty$, for any choice of C_{1} and C_{2} the first two summands of y approach zero, and the sum of the other two summands oscillates with a constant amplitude, so y oscillates without approacing a limit as $t \rightarrow \infty$.

Problem 2. (a) Find the general solution of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}-y=t^{2}
$$

(b) What is the behavior of the solution as $t \rightarrow \infty$?

Solution. The solutions to the characteristic equation are $r_{1}=\frac{3}{4}+\frac{\sqrt{17}}{4}$ (positive) and $r_{2}=$ $\frac{3}{4}-\frac{\sqrt{17}}{4}$ (negative), so the general solution to the corresponding homogeneous equation is ${ }_{C}^{4} e^{r_{1} t^{4}}+C_{2} e^{r_{2} t}$. The right hand side of the equation is a polynomial of degree two, and there are no polynomial solutions to the homogeneous equation (so we don't need to introduce a factor of t^{s}), so we try $Y=A t^{2}+B t+C$ as a particular solution. Plugging Y into the equation, we get

$$
4 A-6 A t-3 B-A t^{2}-B t-C=t^{2}
$$

so $A=-1, B=6, C=-4$. Thus, the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}-t^{2}+6 t-4
$$

As $t \rightarrow 0$, the second summand tends to 0 , and the polynomial part to $-\infty$. When the constant C_{1} is chosen positive, the first term approaches ∞ and dominates the polynomial summand, so $y \rightarrow \infty$. When $C_{1} \leq 0$, the solution approaches $-\infty$.

Problem 3. What is the integrating factor $\mu(t)$ used to solve the first order linear equation:

$$
2 t^{2} y^{\prime}-6 t y=e^{-t}
$$

Solution. We first need to arrange that the coefficient of y^{\prime} is 1 . So we divide by $2 t^{2}$ and rewrite the equation as

$$
y^{\prime}-\frac{3}{t} y=\frac{e^{-t}}{2 t^{2}} .
$$

The integrating factor then is

$$
\mu(t)=e^{\int \frac{-3}{t} \mathrm{~d} t}=e^{-3 \ln t}=t^{-3} .
$$

Problem 4. Solve the initial value problem

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4=0 ; \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1
$$

Solution. Use reduction of order. Set $u=y^{\prime \prime}$ and solve $u^{\prime}-3 u=-4$.
Problem 4'. Solve the initial value problem

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=0 ; \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1
$$

Solution. The characteristic equation factors as $(r+1)(r-2)^{2}=0$, so the general solution is $C_{1} e^{-t}+C_{2} e^{2 t}+C_{3} t e^{2 t}$.

Problem 5. Determine the form of the particular solution when the method of undetermined coefficients is used to solve

$$
y^{\prime \prime}-4 y=e^{-2 t}+2 t^{2}-1
$$

Do NOT solve for the coefficients.

Solution. Since the right hand side is a sum of a polynomial and an exponential function, we know that we can find a particular solution of the same form, except that we may need to multiply each summand by t or t^{2} if the characteristic equation for the corresponding homogeneous equation has a repeated root. Since the characteristic equation is $r^{2}-4=0$, with roots ± 2, we see that need to multiply by a power of t. Thus, the form of the general solution is

$$
Y=A t e^{-2 t}+B t^{2}+C t+D
$$

Problem 5. Each differential equation matches a graph of a general solution. Give the letter of the correct graph:
(a) $2 y^{\prime}+5 y=6$

B
A
C

A

B

C

Problem 7. Show that every solution of the equation $y^{\prime}=x^{3}\left(y^{2}+1\right)$ has at most one minimum point.
Solution. If y has a minimum at some x_{0}, then it must be that $y^{\prime}\left(x_{0}\right)=0$, i.e. $x_{0}^{3}\left(y\left(x_{0}\right)^{2}+1\right)=$ 0 . This can only happen for $x_{0}=0$, so y either attains a minimum at 0 or nowhere.
Problem 8. Solve the differential equation

$$
y^{\prime \prime \prime}=t y^{\prime \prime}
$$

Solution. Using reduction of order, we let $u=y^{\prime \prime}$ and solve $u^{\prime}=t u$, which is a first order linear equation. We get $u=C e^{t^{2} / 2}$, so $y^{\prime}=\int_{t_{0}}^{t} C e^{s^{2} / 2} \mathrm{~d} s+D$, so

$$
y=\int_{t_{0}}^{t} y^{\prime}(s) \mathrm{d} s+E=\int_{t_{0}}^{t}\left(\int_{t_{0}}^{s} C e^{q^{2} / 2} \mathrm{~d} q+D\right) \mathrm{d} s+E
$$

In this case, u is not very nice to integrate, so you do not need to simplify your answer further.

