MATH 23: DIFFERENTIAL EQUATIONS
 WINTER 2017
 PRACTICE PROBLEMS FOR FINAL EXAM

Problem 1. TRUE or FALSE?

- (a) $e^{r x}$ is a solution of the equation : FALSE

$$
x^{2} y^{\prime \prime}+x \alpha y^{\prime}+\beta y=0
$$

- (b) If A is an $n \times n$ matrix and $\mathbf{x}^{\prime}, \mathbf{x}$ are n-vectors, then $\mathbf{x}^{\prime}=A \mathbf{x}$ is a homogeneous system of first order differential equations. TRUE
- (c) If $f(x)$ is continuous on a domain D, then there is a unique Fourier series that converges to f on D. FALSE
- (d) The function $\sin \left(x-\frac{\pi}{4}\right)$ is odd. FALSE
- (e) The function $e^{|x|} \cos \left(x^{3}\right)$ is even. TRUE

Problem 2. For each of the following systems of equations, find the eigenvalues and corresponding eigenvectors, find the general solution, and sketch a phase portrait:
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right) \mathbf{x}$
(b) $\mathrm{x}^{\prime}=\left(\begin{array}{cc}5 & 0 \\ 2 & -1\end{array}\right) \mathbf{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & -4 \\ 2 & 3\end{array}\right) \mathbf{x}$
(d) $x^{\prime}=\left(\begin{array}{cc}4 & -1 \\ 1 & 6\end{array}\right) \mathbf{x}$

Solution. (a) First we compute the eigenvalues: $\left|\begin{array}{cc}-\lambda & 1 \\ -2 & -3-\lambda\end{array}\right|=0$, so $\lambda_{1}=-2, \lambda_{2}=-1$. To get an eigenvector for -2 , we solve $\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)\binom{v_{1}}{v_{2}}=0$. So $\binom{v_{1}}{v_{2}}=c\binom{-1}{2}$. So we can use $\binom{-1}{2}$ as an eigenvector for -2 . Similarly, $\binom{-1}{1}$ is an eigenvector for -1 . The general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1}\binom{-1}{2} e^{-2 t}+c_{2}\binom{-1}{1} e^{-t} .
$$

Plotting the trajectories on the $x_{1} x_{2}$-plane, with arrows indicating the direction as t increases, we get the phase portrait

Alternatively, one can plot a direction field using the given system in matrix form, without solving first: at a point \mathbf{x} the direction vector should be $\left(\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right) \mathbf{x}$. The trajectories of the solutions are just the flow lines of the direction field.
(b) Similar to (a), one gets eigenvalues 5 and -1 , with corresponding eigenvectors $\binom{3}{1}$ and $\binom{0}{1}$. So the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1}\binom{3}{1} e^{5 t}+c_{2}\binom{0}{1} e^{-t}
$$

The phase portrait looks like

(c) The eigenvalues are $1+2 i$ and $1-2 i$, with corresponding eigenvectors $\binom{-1+i}{1}$ and $\binom{-1-i}{1}$. So the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1}\binom{-\cos 2 t-\sin 2 t}{\cos 2 t} e^{t}+c_{2}\binom{\cos 2 t-\sin 2 t}{\sin 2 t} e^{t} .
$$

The phase portrait looks like

(d) The only eigenvalue is 5 , with corresponding eigenvector $\binom{-1}{1}$ (also a repeated eigenvector). To find the generalized eigenvector, we solve

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \boldsymbol{\eta}=\binom{-1}{1}
$$

and get

$$
\boldsymbol{\eta}=\binom{0}{1}+k\binom{-1}{1} .
$$

So the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1} e^{5 t}\binom{-1}{1}+c_{2} e^{5 t}\left[\binom{-1}{1} t+\binom{0}{1}\right] .
$$

The phase portrait looks like

Problem 3. Find a series solution with center $x=0$ to the differential equation

$$
y^{\prime \prime}+x y^{\prime}-3 y=0
$$

What is the radius of convergence?
Solution. Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then $y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, and $y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=$ $\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$. Plugging these series into the equation, we get

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} 3 a_{n} x^{n}=0
$$

In this new equation, the coefficients for each power of x on the left hand side must add up to zero. So for $n=0$ we get $2 a_{2}=3 a_{0}$, i.e. $a_{2}=\frac{3}{2} a_{0}$. For $n>0$ we get

$$
(n+2)(n+1) a_{n+2}+n a_{n}-3 a_{n}=0
$$

so

$$
a_{n+2}=\frac{(3-n) a_{n}}{(n+2)(n+1)}
$$

In particular, when $n=3$ we get $a_{5}=0$ from this recursion, so $a_{2 n+1}=0$ for all $n \geq 2$, and when $n=1$ we get $a_{3}=a_{1} / 3$. Observe in fact that the first series equation gives $a_{1}=0$ anyway, so $a_{n}=0$ for all odd n. For even indices, we repeat the recursion down to a_{0} to get that for $n \geq 1$,

$$
a_{2 n}=\left(\prod_{k=0}^{n-1} \frac{3-2 k}{(2 k+2)(2 k+1)}\right) a_{0}
$$

So the general solution is

$$
y=a_{0}\left(1+\sum_{n=1}^{\infty}\left(\prod_{k=0}^{n-1} \frac{3-2 k}{(2 k+2)(2 k+1)}\right) x^{2 n}\right) .
$$

Since the given differential equation is of form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ and p and q are polynomials, the series solutions have radius ∞.

Problem 4. Given a solution $y_{1}(x)=e^{x}$ for the following ODE, find a second independent solution of:

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0, x>1
$$

Solution. Use reduction of order. Suppose $y_{2}(x)=u(x) e^{x}$. Calculate $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ and plug into the equation. We end up with

$$
u^{\prime \prime}+\frac{(x-2)}{(x-1)} u^{\prime}=0
$$

Let $v=u^{\prime}$; then $v^{\prime}=u^{\prime \prime}$. Hence we get a first order ode:

$$
v^{\prime}+\frac{(x-2)}{(x-1)} v=0
$$

Which can be solved by multiplying with an integrating factor $e^{\int \frac{(x-2)}{(x-1)} d x}=e^{x-\ln |x-1|}=\frac{e^{x}}{x-1}$; or by separation of variables giving $v(x)=c(x-1) e^{-x}$. But $v=u^{\prime}$. Therefore $u=\int v(x) d x=$ $c\left(-x e^{-x}\right)$. Thus $y_{2}=e^{x}\left(c x e^{-x}\right)=c x, c$ arbitrary.

Problem 5. Find a lower bound on the radius of convergence for series solutions about $x=0$ of each of the differential equations:
(a) $\left(x^{2}-x-2\right) y^{\prime \prime}+(x+3) y^{\prime}-7 y=0$
(b) $\left(x^{2}-4 x+5\right) y^{\prime \prime}+y^{\prime}+x^{2} y=0$

Solution. Write the equation as $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
(a) $p(x)=\frac{(x+3)}{\left(x^{2}-x-2\right)}$ and $q(x)=\frac{-7}{\left(x^{2}-x-2\right)}$. The zeros of the denominator are $x=-1, x=2$. Lower bound on radius of converegence for solution is given by the minimum distance from the point about which the series is formed, $x=0$, to the singular points of $p(x), q(x)$. Therefore lower bound on radius of convergence is 1 .
(b)By the same reason as above (we get zeros $2 \pm i$) the lower bound on radius of convergence is $\sqrt{5}$.

Problem 6. Use separation of variables to replace the given partial differential equation with a pair of ordinary differential equations:
(a) $x f_{x y}+f=f_{y y}$
(b) $3 f_{x x}-x f_{y}=0$

Solution. (a) Assume $f(x, y)=X(x) Y(y)$. Then $f_{x}=X^{\prime}(x) Y(y), f_{x y}=X^{\prime} Y^{\prime}$ and $f_{y y}=$ $X Y^{\prime \prime}$. Plugging these into the given PDE, we get

$$
x X^{\prime} Y^{\prime}=X Y^{\prime \prime}-X Y
$$

Separating for the variables x, y, we get

$$
x \frac{X^{\prime}}{X}=\frac{Y^{\prime \prime}-Y}{Y^{\prime}}
$$

For the above to be equal for all x and all y they must be equal to a constant value λ. This gives us two ODEs:

$$
x X^{\prime}-\lambda X=0
$$

and

$$
Y^{\prime \prime}-\lambda Y^{\prime}-Y=0
$$

(b) Again assume $f(x, y)=X(x) Y(y)$. Calculate $f_{x x}, f_{y}$ and plug into the given equation to get

$$
\frac{X^{\prime \prime}}{x X}=\frac{Y^{\prime}}{3 Y}=\lambda
$$

Separating into 2 equations we get

$$
X^{\prime \prime}-\lambda x X=0
$$

and

$$
Y^{\prime}-\lambda 3 Y=0
$$

Problem 7. Find two different Fourier series representation of the function $f(x)=2 x$, $0 \leq x \leq 1$. Comment on the convergence of each series.

Solution. One solution is to extend f to an even function, by defining the extension to be $-2 x$ on $[-1,0]$, and have period 2 . The corresponding Fourier series is a cosine series and has coefficients

$$
a_{0}=2 \int_{0}^{1} 2 x \mathrm{~d} x=2
$$

and for $n>0$, using integration by parts,

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} 2 x \cos n \pi x \mathrm{~d} x=4\left[\frac{x}{n \pi} \sin n \pi x+\frac{1}{n^{2} \pi^{2}} \cos n \pi x\right]_{0}^{1} \\
& =\frac{4}{n^{2} \pi^{2}}(\cos n \pi-1) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
-\frac{8}{n^{2} \pi^{2}} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

i.e. the series is

$$
1-\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi x}{(2 n-1)^{2}}
$$

Since the extension is continuous everywhere, the series converges to it (and in particular to $f)$ everywhere.

One can also extend to a function of period 2 that is odd near zero, by declaring the extension to be $2 x$ on $(-1,0)$. The corresponding Fourier series is a sine series and has coefficients

$$
\begin{aligned}
b_{n} & =2 \int_{0}^{1} 2 x \sin n \pi x \mathrm{~d} x=4\left[-\frac{x}{n \pi} \cos n \pi x+\frac{1}{n^{2} \pi^{2}} \sin n \pi x\right]_{0}^{1} \\
& =\frac{-4}{n \pi}(-1)^{n}
\end{aligned}
$$

i.e. the series is

$$
-\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \sin n \pi x}{n}
$$

At $x=2 k+1$, this series converges to the average of the left and right limits of the extension, i.e. to zero. On the other hand, the extension is always 2 at $2 k+1$. So the series converges to the extension for all $x \neq 2 k+1$, and in particular converges to f on $[0,1)$.

Problem 8. Solve the equation below by making a change of variable $u=\ln \left(\frac{y}{k}\right)$.

$$
y^{\prime}=r y \ln (k / y), y(0)=y_{0}
$$

Solution. Using the suggested change of variable $u(t)=\ln (y(t))-\ln (k) \Longrightarrow \frac{d u}{d t}=\frac{d u}{d y} \frac{d y}{d t}=$ $\frac{1}{y} \frac{d y}{d t} \Longrightarrow \frac{d y}{d t}=y \frac{d u}{d t}$. Note that $y(t)=k e^{u(t)}$. Plugging these into the equation we get

$$
k e^{u} u^{\prime}=-r k e^{u} u(t), u(0)=\ln \left(y_{0} / k\right)
$$

This is a straightforward equation to solve, which gives after substituting back $u=\ln \left(\frac{y}{k}\right)$, $y(t)=k \exp \left[c e^{-r t}\right]$ where $c=\left[\ln \left(y_{0} / k\right)\right]$. (This equation is known as Gompertz equation.)
Problem 9. Find the solution of the initial value problem:

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=\frac{1}{2}
$$

Find the maximum value of the solution and also the point where the solution is zero.
Solution. Characteristic polynomial is $2 r^{2}-3 r+1=0$. Roots are $r_{1}=1, r_{2}=1 / 2$ Therefore general solution is $y(x)=c_{1} e^{t}+c_{2} e^{t / 2}$. Using initial conditions we get $c_{1}=-1, c_{2}=3$. Hence general solution is $y(x)=-e^{t}+3 e^{t / 2}$. find $y^{\prime}(x)$ set it equal to zero to find $\mathrm{max} / \mathrm{min}$ points. Max occurs at $t=2 \ln \left(\frac{3}{2}\right)$. At this point $y(x)=\frac{9}{4} . y(x)=0$ when $e^{t}=3 e^{t / 2}$. That is then $\ln (1 / 3)=-t / 2 \Longrightarrow t=\ln 9$.

