MATH 23 - DIFFERENTIAL EQUATIONS, WINTER 2011

FINAL

PRINT NAME:

(1) Find the first 3 nonzero terms of a series solutions corresponding to the larger root of the indicial equation at the regular singular point $x=0$ of the differential equation:

$$
2 x y^{\prime \prime}+y^{\prime}+x y=0
$$

[^0](2) Consider the equation of heat conduction on a rod of length 40 with the temperature of both ends held at 0 :
$$
u_{x x}=u_{t}
$$

Find the first three nonzero terms of the Fourier series for u, given that $u(x, 0)=f(x)$ and $u^{\prime}(x, 0)=0$ where $f(x)=50$ if $10<x<30$ and $f(x)=0$ otherwise.
(3) Consider the system of equations:

$$
x^{\prime}=a x+2 y
$$

$y^{\prime}=-2 x$
a. For what values of a is the equilibrium at $(0,0)$ stable?
b. For what values is it unstable?
c. For what values do solutions oscillate?
d. Find the general solution to the system of equations in terms of real valued functions when $a=2$.
(4) Find all critical points of the following nonlinear system. For each critical point, linearize the system, find the eigenvalues, and indicate whether the equilibrium is stable or unstable.

$$
\begin{aligned}
& x^{\prime}(t)=x y(2+x) \\
& y^{\prime}(t)=(7-x)(y+x)
\end{aligned}
$$

[^0]: Date: March 14, 2010.

