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Homogeneous Linear Systems with Constant Coefficients

Some Generalities

The Set Up

Consider the general equation

x' = Ax

)

where A is a constant matrix.

@ equilibrium solutions correspond to solutions of Ax = 0.
@ detA # 0if and only if x(t) = 0 is the only equilibrium
solution.

@ When det A # 0 it is interesting to see whether solutions
approach or diverge from the equilibrium x(t) = 0 as
t — Fo0.
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Homogeneous Linear Systems with Constant Coefficients

Some Generalities

The Set Up

Let A be a 2 x 2 matrix

@ a solution x(t) = (xq(t), x2(t)) of
x = AX,

is a curve in the xq x>-plane.
@ X/(t) = (x{(t), x5(t)) is the velocity vector.
@ Plotting Ax gives us the phase plane.
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Homogeneous Linear Systems with Constant Coefficients

Some Generalities

The Strategy

Let A be a 2 x 2 matrix (with det(A) # 0).

@ Suppose x(t) = ¢e" solves

x' = Ax

)

where ¢ = ((1,-..,¢n)l
@ x(t) = ¢e™ is a solution if and only if A¢ = r¢.

Solving X’ = AX is equivalent to finding eigenvalues and eigenvectors
of A.
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Example 1: Saddle

3 -2

LetA:<2 5

), then solve
x' = AX.

@ Step 1: Assume solution looks like x(t) = ¢e".
@ Step 2: Find eigenvalues of A.

@ Step 3: Find the corresponding eigenvectors.
@ Step 4: Find the General Solution

The equilibrium solution x(t) = (0,0) is a saddle.
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Example 1: Saddle
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Example 2: Sink

-3 V2
Let A = h
et (\/E 5 ),tensolve

x = Ax.

@ Step 1: Assume solution looks like x(t) = ¢e".
@ Step 2: Find eigenvalues of A.

@ Step 3: Find the corresponding eigenvectors.
@ Step 4: Find the General Solution

The equilibrium solution x(t) = (0, 0) is a sink.
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Distinct Real Eigenvalues

Example 2: Sink
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Example 3: Source

3 V2
Let A = h
et ( 3 5 ),t en solve

x = Ax.

@ Step 1: Assume solution looks like x(t) = ¢e".
@ Step 2: Find eigenvalues of A.

@ Step 3: Find the corresponding eigenvectors.
@ Step 4: Find the General Solution

The equilibrium solution x(t) = (0, 0) is a source.
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Distinct Real Eigenvalues

Example 3: Source
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Equilibrium Points

Consider a 2 x 2 constant coefficient system with two nonzero
real, distinct eigenvalues A1, \s.

@ If Ay < 0 < \g, then the origin is a saddle.

@ If Ay < X\ < 0, then the origin is a sink. All solutions tend
to (0,0) as t — oo, and most tend towards (0, 0) in the
direction of the \o-eigenvector. Why?

@ If 0 < A2 < Ay, then (0,0) is a source. All solutions (except
the equil. sol.) go to infinity as t — oo, and most solution
curves leave the origin in the direction of the
Ao-eigenvector. Why?
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Distinct Real Eigenvalues Examples
Summary of Equilibria

Equilibrium Points

What happens if A\ = 0 and Ay # 0?
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Useful Facts

Theorem

Let A be a2 x 2 matrix with real entries and let ¢(t) be a
complex valued solution to

x' = Ax

)

then

@ (1) is also a solution
@ and, therefore, Re(¢(t)) and Im(¢(t)) are also solutions.
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Useful Facts

Let A be a 2 x 2 matrix with real entries and and suppose

A= p+iv (v #0)is an eigenvalue of A with a corresponding
eigenvector \. Then \ = p, — iv is an eigenvalue of A and C is a
corresponding eigenvector.
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Useful Facts

Theorem

Let A be a 2 x 2 real matrix with complex eigenvalues
M =p+ivand, = u—iv, wherev # 0. Let ( be an
eigenvector. Then

Q@ ¢=V+iW, where V, W < R? are non-zero.

Q V =Re(¢) and W = Im(¢) are linearly independent
vectors. In particular, V, W # 0.

Why?
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

A Strategy

Suppose A has complex eigenvalues A = p + iv, v # 0. To
solve x’ = Ax we:

@ Assume x(t) = eM¢
© Find eigenvector ¢ = V + i W associated to A
© x(t) = eM¢ is a complex valued solution.

© Then {Re(x(t)), Im(x(t))} forms a fundamental set of
real-valued solutions. Why?
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Real Part Non-Zero

. Purely Imaginary Eigenvalues
Complex Eigenvalues y imaginary =igenve
Summary of Equilibria

Example I: Real Part Non-Zero
-2 -3
Let A = < 3 _» >,then solve

x = AXx.

@ Step 1: Assume solution looks like
x(t) = ce™.
@ Step 2: Find eigenvalues of A
M=—2+3i=-2-3i

@ Step 3: Find the corresponding eigenvectors.

o=(1)e=(1)
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Example I: Real Part Non-Zero

@ Step 4: A non-trivial complex solution is given

ot cos(3t) + isin(3t)
ot) = MG = e ( sin(3t) — i cos(3t) )

@ Step 5: The general solution is given by

x(t) = c1Re(¢(t)) + czIm(¢(t))
B _ cos(3t) _ sin(3t)
- @ 2t< sin(3t) ) T8 2t< — cos(3t) )

The equilibrium solution x(t) = (0, 0) is a spiral point.
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Real Part Non-Zero
Purely Imaginary Eigenvalues
Summary of Equilibria

Complex Eigenvalues

Example I: Real Part Non-Zero
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Real Part Non-Zero

) Purely Imaginary Eigenvalues
Complex Eigenvalues Summary of Equilibria

Example Il: Purely Imaginary Eigenvalues

— 0 2 ! __
Let B = ( 5 0 ),then solve x’ = Bx.

@ Step 1: Assume solution looks like

x(t) = ce™.
@ Step 2: Find eigenvalues of B
A =20, Ao = —2i.

@ Step 3: Find the corresponding eigenvectors

o=(1)e=(4)
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Example Il: Purely Imaginary Eigenvalues

@ Step 4: Find Complex Solutions

_ mte _ [ cos(2t) + isin(2t)
o(t) = eMi¢y = < sin(21) -+ i cos(21) )

@ Step 5: The General Solution is given by

x(t) = c1Re(¢(t)) + czIm(e(t))
B cos(2t) sin(2t)
= ( —sin(2t) > T e < cos(2t) >
The equilibrium solution x(t) = (0,0) is a center.
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Example Il: Purely Imaginary Eigenvalues
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Real Part Non-Zero
Purely Imaginary Eigenvalues

Complex Eigenvalues Summary of Equilibria

Equilibrium Points

Consider a 2 x 2 constant coefficient system with complex
eigenvalues A =a + i3 (8 #0).
@ If o < 0, the solutions spiral towards the origin as t —
and we say (0, 0) is a spiral sink.
@ If o > 0, the solutions spiral away from the origin as t — oo
and we say (0,0) is a spiral source.
@ If « = 0, the solutions are periodic and we say (0,0) is a
center.
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Preliminaries
An Example

X ral Soluti
Repeated Eigenvalues s SelEn

The Set Up

Let A be a 2 x 2 real matrix with one repeated real eigenvalue
A. There are two cases.

@ ) has two linearly independent eigenvectors ¢; and (.
@ ) has only one linearly indep. eigenvector (.

C.J. Sutton Systems of First Order ODEs, Part Il



Preliminaries
An Example

Repeated Eigenvalues General Solution

The Set Up

Case 1: ) has two linearly independent eigenvectors ¢; and (».

@ General solution is ¢(t) = ¢1eM{ + ceMes.
@ )\ > 0then origin is a source. A < 0 origin is a sink.

Case 2: )\ has one linearly independent eigenvector (.

@ e*( is a non-trivial solution.

@ How do you get a fundamental set of solutions? That is,
how do we get the general solution? The key will be the
existence of a vector n such that

(A=A)n=¢.
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Preliminaries
An Example
General Solution

Repeated Eigenvalues

Example: Repeated Eigenvalue

-2 1
0 -2

@ There is one eigenvalue of A: A = -2

@ Multeeom(—2) = 1. In particular, the eigenvectors
associated to A = —2 are all scalar multiples of

~(2)

® xqi(t) =eM¢ =2 < g) ) is a non-trivial solution.

Let A= < > then solve X’ = Ax.
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Preliminaries
An Example
General Solution

Repeated Eigenvalues

Example: Repeated Eigenvalue

The system x’ = ( _02 _12 )x implies

o ¥ — 2y hence y(t) = yoe

° Then X = _2x + ype

@ So x(t) = yote 2 + xge 2L,

@ Hence, the general solution is given by

0 :Xoe_2t< :) ) + o <e—2t < (1) > —|—te—2t< g) ))

@ Notice that n = (0, 1)! satisfies:
(A—(=2)/)n=¢.
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Preliminaries
An Example
General Solution

Repeated Eigenvalues

Example: Repeated Eigenvalue
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Preliminaries
An Example

Repeated Eigenvalues ez Suliem

Useful Facts

Let A be a 2 x 2 real matrix with one repeated real eigenvalue
. And suppose the \-eigenvectors are of the form c¢ for any
¢ # 0 e R (i.e., multeeom(X) = 1), then there exists a non-zero
vector n such that

(A=) =C.

@ It then follows that
x1(t) = eM¢ and x,(t) = e’y + te¢

form a fundamental set of solutions to the system x’ = Ax.
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Preliminaries
An Example

Repeated Eigenvalues ez Suliem

The Theorem

Suppose
x = Ax

is a const. coeff. 2 x 2 system where A has a repeated
eigenvalue X with geometric multiplicity 1. Then the general
solution has the form

c1eM¢ + co(eMn + ter)

where ( is a A-eigenvector and ) satisfies (A — \)n = ¢.

Equivalently...
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Preliminaries
An Example
General Solution

Repeated Eigenvalues

The Theorem (restated)

Suppose
X = AX

is a const. coeff. 2 x 2 system where A has a repeated
eigenvalue \ with geometric multiplicity 1. Then the general
solution has the form

i + et

where 1) = (Xo, Yo) IS an arbitrary initial condition and
¢ = (A — ADq. If¢ is zero, then 1) is an eigenvector. Otherwise,
¢ is an eigenvector.
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Preliminaries
An Example

Repeated Eigenvalues ez Suliem

Exercises

Find the general solution to the system x’ = Ax, where

oa-(; )

4 —1
9A=<1 2)
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