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Some Generalities

The Set Up

Consider the general equation

x′ = Ax,

where A is a constant matrix.

equilibrium solutions correspond to solutions of Ax = 0.
det A 6= 0 if and only if x(t) = 0 is the only equilibrium
solution.
When det A 6= 0 it is interesting to see whether solutions
approach or diverge from the equilibrium x(t) = 0 as
t → ±∞.
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Some Generalities

The Set Up

Let A be a 2× 2 matrix

a solution x(t) = (x1(t), x2(t)) of

x′ = Ax,

is a curve in the x1x2-plane.
x′(t) = (x ′1(t), x

′
2(t)) is the velocity vector.

Plotting Ax gives us the phase plane.
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The Strategy

Let A be a 2× 2 matrix (with det(A) 6= 0).

Suppose x(t) = ζert solves

x′ = Ax,

where ζ = (ζ1, . . . , ζn)
t .

x(t) = ζert is a solution if and only if Aζ = rζ.

Moral
Solving x′ = Ax is equivalent to finding eigenvalues and eigenvectors
of A.
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Example 1: Saddle

Let A =

(
3 −2
2 −2

)
, then solve

x′ = Ax.

Step 1: Assume solution looks like x(t) = ζert .
Step 2: Find eigenvalues of A.
Step 3: Find the corresponding eigenvectors.
Step 4: Find the General Solution

The equilibrium solution x(t) = (0,0) is a saddle.
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Example 1: Saddle
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Example 2: Sink

Let A =

(
−3

√
2√

2 −2

)
, then solve

x′ = Ax.

Step 1: Assume solution looks like x(t) = ζert .
Step 2: Find eigenvalues of A.
Step 3: Find the corresponding eigenvectors.
Step 4: Find the General Solution

The equilibrium solution x(t) = (0,0) is a sink.
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Example 2: Sink
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Example 3: Source

Let A =

(
3 −

√
2

−
√

2 2

)
, then solve

x′ = Ax.

Step 1: Assume solution looks like x(t) = ζert .
Step 2: Find eigenvalues of A.
Step 3: Find the corresponding eigenvectors.
Step 4: Find the General Solution

The equilibrium solution x(t) = (0,0) is a source.
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Example 3: Source
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Equilibrium Points

Consider a 2× 2 constant coefficient system with two nonzero
real, distinct eigenvalues λ1, λ2.

If λ1 < 0 < λ2, then the origin is a saddle.
If λ1 < λ2 < 0, then the origin is a sink. All solutions tend
to (0,0) as t →∞, and most tend towards (0,0) in the
direction of the λ2-eigenvector. Why?
If 0 < λ2 < λ1, then (0,0) is a source. All solutions (except
the equil. sol.) go to infinity as t →∞, and most solution
curves leave the origin in the direction of the
λ2-eigenvector. Why?
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Equilibrium Points

Question
What happens if λ1 = 0 and λ2 6= 0?
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Useful Facts

Theorem
Let A be a 2× 2 matrix with real entries and let φ(t) be a
complex valued solution to

x′ = Ax,

then
1 φ(t) is also a solution
2 and, therefore, Re(φ(t)) and Im(φ(t)) are also solutions.
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Useful Facts

Theorem
Let A be a 2× 2 matrix with real entries and and suppose
λ = µ+ iν (ν 6= 0) is an eigenvalue of A with a corresponding
eigenvector λ. Then λ = µ− iν is an eigenvalue of A and ζ is a
corresponding eigenvector.
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Useful Facts

Theorem
Let A be a 2× 2 real matrix with complex eigenvalues
λ1 = µ+ iν and λ2 = µ− iν, where ν 6= 0. Let ζ be an
eigenvector. Then

1 ζ = V + i W , where V ,W ∈ R2 are non-zero.
2 V = Re(ζ) and W = Im(ζ) are linearly independent

vectors. In particular, V ,W 6= 0.

Why?
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A Strategy

Suppose A has complex eigenvalues λ = µ+ iν, ν 6= 0. To
solve x′ = Ax we:

1 Assume x(t) = eλtζ

2 Find eigenvector ζ = V + i W associated to λ
3 x(t) = eλtζ is a complex valued solution.
4 Then {Re(x(t)), Im(x(t))} forms a fundamental set of

real-valued solutions. Why?
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Example I: Real Part Non-Zero

Let A =

(
−2 −3
3 −2

)
, then solve

x′ = Ax.

Step 1: Assume solution looks like

x(t) = ζert .

Step 2: Find eigenvalues of A

λ1 = −2 + 3i , λ2 = −2− 3i

Step 3: Find the corresponding eigenvectors.

ζ1 =

(
1
−i

)
, ζ2 =

(
1
+i

)
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Example I: Real Part Non-Zero

Step 4: A non-trivial complex solution is given

φ(t) = eλ1tζ1 = e−2t
(

cos(3t) + i sin(3t)
sin(3t)− i cos(3t)

)
Step 5: The general solution is given by

x(t) = c1 Re(φ(t)) + c2 Im(φ(t))

= c1e−2t
(

cos(3t)
sin(3t)

)
+ c2e−2t

(
sin(3t)
− cos(3t)

)

The equilibrium solution x(t) = (0,0) is a spiral point.
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Example I: Real Part Non-Zero
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Example II: Purely Imaginary Eigenvalues

Let B =

(
0 2
−2 0

)
, then solve x′ = Bx.

Step 1: Assume solution looks like

x(t) = ζert .

Step 2: Find eigenvalues of B

λ1 = 2i , λ2 = −2i .

Step 3: Find the corresponding eigenvectors

ζ1 =

(
1
+i

)
, ζ2 =

(
1
−i

)
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Example II: Purely Imaginary Eigenvalues

Step 4: Find Complex Solutions

φ(t) = eλ1tζ1 =

(
cos(2t) + i sin(2t)
− sin(2t) + i cos(2t)

)
Step 5: The General Solution is given by

x(t) = c1 Re(φ(t)) + c2 Im(φ(t))

= c1

(
cos(2t)
− sin(2t)

)
+ c2

(
sin(2t)
cos(2t)

)

The equilibrium solution x(t) = (0,0) is a center.
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Example II: Purely Imaginary Eigenvalues
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Equilibrium Points

Consider a 2× 2 constant coefficient system with complex
eigenvalues λ = α± i β (β 6= 0).

If α < 0, the solutions spiral towards the origin as t →∞
and we say (0,0) is a spiral sink.
If α > 0, the solutions spiral away from the origin as t →∞
and we say (0,0) is a spiral source.
If α = 0, the solutions are periodic and we say (0,0) is a
center.
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The Set Up

Let A be a 2× 2 real matrix with one repeated real eigenvalue
λ. There are two cases.

1 λ has two linearly independent eigenvectors ζ1 and ζ2.
2 λ has only one linearly indep. eigenvector ζ.
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The Set Up

Case 1: λ has two linearly independent eigenvectors ζ1 and ζ2.

General solution is φ(t) = c1eλtζ1 + c2eλtζ2.
λ > 0 then origin is a source. λ < 0 origin is a sink.

Case 2: λ has one linearly independent eigenvector ζ.

eλtζ is a non-trivial solution.
How do you get a fundamental set of solutions? That is,
how do we get the general solution? The key will be the
existence of a vector η such that

(A− λI)η = ζ.
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Example: Repeated Eigenvalue

Let A =

(
−2 1
0 −2

)
, then solve x′ = Ax.

There is one eigenvalue of A: λ = −2
multgeom(−2) = 1. In particular, the eigenvectors
associated to λ = −2 are all scalar multiples of

ζ =

(
1
0

)
.

x1(t) = eλtζ = e−2t
(

1
0

)
is a non-trivial solution.
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Example: Repeated Eigenvalue

The system x′ =
(
−2 1
0 −2

)
x implies

dy
dt = −2y , hence y(t) = y0e−2t

Then dx
dt = −2x + y0e−2t

So x(t) = y0te−2t + x0e−2t .
Hence, the general solution is given by

φ(t) = x0e−2t
(

1
0

)
+ y0

(
e−2t

(
0
1

)
+ te−2t

(
1
0

))
Notice that η = (0,1)t satisfies:

(A− (−2)I)η = ζ.
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Example: Repeated Eigenvalue
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Useful Facts

Theorem
Let A be a 2× 2 real matrix with one repeated real eigenvalue
λ. And suppose the λ-eigenvectors are of the form cζ for any
c 6= 0 ∈ R (i.e., multgeom(λ) = 1), then there exists a non-zero
vector η such that

(A− λI)η = ζ.

It then follows that

x1(t) = eλtζ and x2(t) = eλtη + teλtζ

form a fundamental set of solutions to the system x′ = Ax.
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The Theorem

Theorem
Suppose

x′ = Ax

is a const. coeff. 2× 2 system where A has a repeated
eigenvalue λ with geometric multiplicity 1. Then the general
solution has the form

c1eλtζ + c2(eλtη + teλtζ)

where ζ is a λ-eigenvector and η satisfies (A− λI)η = ζ.

Equivalently...
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The Theorem (restated)

Theorem
Suppose

x′ = Ax

is a const. coeff. 2× 2 system where A has a repeated
eigenvalue λ with geometric multiplicity 1. Then the general
solution has the form

eλt η̂ + teλt ζ̂

where η̂ = (x0, y0) is an arbitrary initial condition and
ζ̂ = (A− λI)η̂. If ζ̂ is zero, then η̂ is an eigenvector. Otherwise,
ζ̂ is an eigenvector.

C.J. Sutton Systems of First Order ODEs, Part II



Homogeneous Linear Systems with Constant Coefficients
Distinct Real Eigenvalues

Complex Eigenvalues
Repeated Eigenvalues

Preliminaries
An Example
General Solution

Exercises

Find the general solution to the system x′ = Ax, where

1 A =

(
1 −1
1 3

)
2 A =

(
4 −1
1 2

)
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