Systems of First Order ODEs, Part II

Craig J. Sutton
craig.j.sutton@dartmouth.edu
Department of Mathematics
Dartmouth College

Math 23 Differential Equations Winter 2013

Outline

(1) Homogeneous Linear Systems with Constant Coefficients

- Some Generalities
(2) Distinct Real Eigenvalues
- Examples
- Summary of Equilibria
(3) Complex Eigenvalues
- Real Part Non-Zero
- Purely Imaginary Eigenvalues
- Summary of Equilibria

4. Repeated Eigenvalues

- Preliminaries
- An Example
- General Solution

Outline

(1) Homogeneous Linear Systems with Constant Coefficients

- Some GeneralitiesDistinct Real Eigenvalues
- Examples
- Summary of EquilibriaComplex Eigenvalues
- Real Part Non-Zero
- Purely Imaginary Eigenvalues
- Summary of EquilibriaRepeated Eigenvalues
- Preliminaries
- An Example
- General Solution

The Set Up

Consider the general equation

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

where \mathbf{A} is a constant matrix.

- equilibrium solutions correspond to solutions of $\mathbf{A x}=0$.
- $\operatorname{det} \mathbf{A} \neq 0$ if and only if $\mathbf{x}(t)=0$ is the only equilibrium solution.
- When $\operatorname{det} \mathbf{A} \neq 0$ it is interesting to see whether solutions approach or diverge from the equilibrium $\mathbf{x}(t)=0$ as $t \rightarrow \pm \infty$.

The Set Up

Let \mathbf{A} be a 2×2 matrix

- a solution $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t)\right)$ of

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

is a curve in the $x_{1} x_{2}$-plane.

- $\mathbf{x}^{\prime}(t)=\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t)\right)$ is the velocity vector.
- Plotting Ax gives us the phase plane.

The Strategy

Let \mathbf{A} be a 2×2 matrix (with $\operatorname{det}(\mathbf{A}) \neq 0$).

- Suppose $\mathbf{x}(t)=\zeta e^{r t}$ solves

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

where $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)^{t}$.

- $\mathbf{x}(t)=\zeta e^{r t}$ is a solution if and only if $\mathbf{A} \zeta=r \zeta$.

Moral

Solving $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is equivalent to finding eigenvalues and eigenvectors of \mathbf{A}.

Outline

(1) Homogeneous Linear Systems with Constant Coefficients

- Some Generalities
(2) Distinct Real Eigenvalues
- Examples
- Summary of Equilibria
(3) Complex Eigenvalues
- Real Part Non-Zero
- Purely Imaginary Eigervalues
- Summary of Equilibria
(4)

Repeated Eigenvalues

- Preliminaries
- An Example
- General Solution

Example 1: Saddle

$$
\begin{aligned}
& \text { Let } \mathbf{A}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \text {, then solve } \\
& \qquad \mathbf{x}^{\prime}=\mathbf{A x}
\end{aligned}
$$

- Step 1: Assume solution looks like $\mathbf{x}(t)=\zeta e^{r t}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t)=(0,0)$ is a saddle.

Examples

Summary of Equilibria

Example 1: Saddle

Example 2: Sink

$$
\text { Let } \mathbf{A}=\left(\begin{array}{ll}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right), \text { then solve }
$$

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

- Step 1: Assume solution looks like $\mathbf{x}(t)=\zeta e^{r t}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t)=(0,0)$ is a sink.

Example 2: Sink

Example 3: Source

$$
\text { Let } \mathbf{A}=\left(\begin{array}{cc}
3 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right) \text {, then solve }
$$

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} .
$$

- Step 1: Assume solution looks like $\mathbf{x}(t)=\zeta e^{r t}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t)=(0,0)$ is a source.

Example 3: Source

Equilibrium Points

Consider a 2×2 constant coefficient system with two nonzero real, distinct eigenvalues λ_{1}, λ_{2}.

- If $\lambda_{1}<0<\lambda_{2}$, then the origin is a saddle.
- If $\lambda_{1}<\lambda_{2}<0$, then the origin is a sink. All solutions tend to $(0,0)$ as $t \rightarrow \infty$, and most tend towards $(0,0)$ in the direction of the λ_{2}-eigenvector. Why?
- If $0<\lambda_{2}<\lambda_{1}$, then $(0,0)$ is a source. All solutions (except the equil. sol.) go to infinity as $t \rightarrow \infty$, and most solution curves leave the origin in the direction of the λ_{2}-eigenvector. Why?

Equilibrium Points

Question

What happens if $\lambda_{1}=0$ and $\lambda_{2} \neq 0$?

Outline

Homogeneous Linear Systems with Constant Coefficients

- Some Generalities
(2. Distinct Real Figenvalues
- Examples
- Summary of Equilibria
(3) Complex Eigenvalues
- Real Part Non-Zero
- Purely Imaginary Eigenvalues
- Summary of Equilibria

Repeated Eigenvalues

- Preliminaries
- An Example
- General Solution

Useful Facts

Theorem

Let \mathbf{A} be a 2×2 matrix with real entries and let $\phi(t)$ be a complex valued solution to

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

then
(1) $\overline{\phi(t)}$ is also a solution
(2) and, therefore, $\operatorname{Re}(\phi(t))$ and $\operatorname{Im}(\phi(t))$ are also solutions.

Useful Facts

Theorem

Let \mathbf{A} be a 2×2 matrix with real entries and and suppose $\lambda=\mu+i \nu(\nu \neq 0)$ is an eigenvalue of \mathbf{A} with a corresponding eigenvector λ. Then $\bar{\lambda}=\mu-i \nu$ is an eigenvalue of \mathbf{A} and $\bar{\zeta}$ is a corresponding eigenvector.

Useful Facts

Theorem

Let \mathbf{A} be a 2×2 real matrix with complex eigenvalues $\lambda_{1}=\mu+i \nu$ and $\lambda_{2}=\mu-i \nu$, where $\nu \neq 0$. Let ζ be an eigenvector. Then
(1) $\zeta=V+i W$, where $V, W \in \mathbb{R}^{2}$ are non-zero.
(2) $V=\operatorname{Re}(\zeta)$ and $W=\operatorname{Im}(\zeta)$ are linearly independent vectors. In particular, $V, W \neq \mathbf{0}$.

Why?

A Strategy

Suppose A has complex eigenvalues $\lambda=\mu+i \nu, \nu \neq 0$. To solve $\mathbf{x}^{\prime}=\mathbf{A x}$ we:
(1) Assume $\mathbf{x}(t)=e^{\lambda t} \zeta$
(2) Find eigenvector $\zeta=\mathbf{V}+i \mathbf{W}$ associated to λ
(3) $\mathbf{x}(t)=e^{\lambda t} \zeta$ is a complex valued solution.
(4) Then $\{\operatorname{Re}(\mathbf{x}(t)), \operatorname{Im}(\mathbf{x}(t))\}$ forms a fundamental set of real-valued solutions. Why?

Example I: Real Part Non-Zero

$$
\text { Let } \mathbf{A}=\left(\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right) \text {, then solve }
$$

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

- Step 1: Assume solution looks like

$$
\mathbf{x}(t)=\zeta e^{r t}
$$

- Step 2: Find eigenvalues of \mathbf{A}

$$
\lambda_{1}=-2+3 i, \lambda_{2}=-2-3 i
$$

- Step 3: Find the corresponding eigenvectors.

$$
\zeta_{1}=\binom{1}{-i}, \zeta_{2}=\binom{1}{+i}
$$

Example I: Real Part Non-Zero

- Step 4: A non-trivial complex solution is given

$$
\phi(t)=e^{\lambda_{1} t} \zeta_{1}=e^{-2 t}\binom{\cos (3 t)+i \sin (3 t)}{\sin (3 t)-i \cos (3 t)}
$$

- Step 5: The general solution is given by

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} \operatorname{Re}(\phi(t))+c_{2} \operatorname{Im}(\phi(t)) \\
& =c_{1} e^{-2 t}\binom{\cos (3 t)}{\sin (3 t)}+c_{2} e^{-2 t}\binom{\sin (3 t)}{-\cos (3 t)}
\end{aligned}
$$

The equilibrium solution $\mathbf{x}(t)=(0,0)$ is a spiral point.

Example I: Real Part Non-Zero

Example II: Purely Imaginary Eigenvalues

Let $\mathbf{B}=\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$, then solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$.

- Step 1: Assume solution looks like

$$
\mathbf{x}(t)=\zeta e^{r t}
$$

- Step 2: Find eigenvalues of \mathbf{B}

$$
\lambda_{1}=2 i, \lambda_{2}=-2 i
$$

- Step 3: Find the corresponding eigenvectors

$$
\zeta_{1}=\binom{1}{+i}, \zeta_{2}=\binom{1}{-i}
$$

Example II: Purely Imaginary Eigenvalues

- Step 4: Find Complex Solutions

$$
\phi(t)=e^{\lambda_{1} t} \zeta_{1}=\binom{\cos (2 t)+i \sin (2 t)}{-\sin (2 t)+i \cos (2 t)}
$$

- Step 5: The General Solution is given by

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} \operatorname{Re}(\phi(t))+c_{2} \operatorname{Im}(\phi(t)) \\
& =c_{1}\binom{\cos (2 t)}{-\sin (2 t)}+c_{2}\binom{\sin (2 t)}{\cos (2 t)}
\end{aligned}
$$

The equilibrium solution $\mathbf{x}(t)=(0,0)$ is a center.

Purely Imaginary Eigenvalues
Summary of Equilibria

Example II: Purely Imaginary Eigenvalues

Equilibrium Points

Consider a 2×2 constant coefficient system with complex eigenvalues $\lambda=\alpha \pm i \beta(\beta \neq 0)$.

- If $\alpha<0$, the solutions spiral towards the origin as $t \rightarrow \infty$ and we say $(0,0)$ is a spiral sink.
- If $\alpha>0$, the solutions spiral away from the origin as $t \rightarrow \infty$ and we say $(0,0)$ is a spiral source.
- If $\alpha=0$, the solutions are periodic and we say $(0,0)$ is a center.

Outline

(1) Homogeneous Linear Systems with Constant Coefficients

- Some Generalities
(2) Distinct Real Figenvalues
- Examples
- Summary of EquilibriaComplex Eigenvalues
- Real Part Non-Zero
- Purely Imaginary Eigenvalues
- Summary of Equilibria

4. Repeated Eigenvalues

- Preliminaries
- An Example
- General Solution

The Set Up

Let \mathbf{A} be a 2×2 real matrix with one repeated real eigenvalue λ. There are two cases.
(1) λ has two linearly independent eigenvectors ζ_{1} and ζ_{2}.
(2) λ has only one linearly indep. eigenvector ζ.

The Set Up

Case 1: λ has two linearly independent eigenvectors ζ_{1} and ζ_{2}.

- General solution is $\phi(t)=c_{1} e^{\lambda t} \zeta_{1}+c_{2} e^{\lambda t} \zeta_{2}$.
- $\lambda>0$ then origin is a source. $\lambda<0$ origin is a sink.

Case 2: λ has one linearly independent eigenvector ζ.

- $e^{\lambda t} \zeta$ is a non-trivial solution.
- How do you get a fundamental set of solutions? That is, how do we get the general solution? The key will be the existence of a vector η such that

$$
(\mathbf{A}-\lambda I) \eta=\zeta
$$

Example: Repeated Eigenvalue

$$
\text { Let } \mathbf{A}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right) \text {, then solve } \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \text {. }
$$

- There is one eigenvalue of $\mathbf{A}: \lambda=-2$
- mult ${ }_{\text {geom }}(-2)=1$. In particular, the eigenvectors associated to $\lambda=-2$ are all scalar multiples of

$$
\zeta=\binom{1}{0}
$$

- $\mathbf{x}_{1}(t)=e^{\lambda t} \zeta=e^{-2 t}\binom{1}{0}$ is a non-trivial solution.

Example: Repeated Eigenvalue

The system $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-2 & 1 \\ 0 & -2\end{array}\right) \mathbf{x}$ implies

- $\frac{d y}{d t}=-2 y$, hence $y(t)=y_{0} e^{-2 t}$
- Then $\frac{d x}{d t}=-2 x+y_{0} e^{-2 t}$
- So $x(t)=y_{0} t e^{-2 t}+x_{0} e^{-2 t}$.
- Hence, the general solution is given by

$$
\phi(t)=x_{0} e^{-2 t}\binom{1}{0}+y_{0}\left(e^{-2 t}\binom{0}{1}+t e^{-2 t}\binom{1}{0}\right)
$$

- Notice that $\eta=(0,1)^{t}$ satisfies:

$$
(\mathbf{A}-(-2) /) \eta=\zeta
$$

Example: Repeated Eigenvalue

Useful Facts

Theorem

Let \mathbf{A} be a 2×2 real matrix with one repeated real eigenvalue λ. And suppose the λ-eigenvectors are of the form $c \zeta$ for any $c \neq 0 \in \mathbb{R}$ (i.e., multgeom $(\lambda)=1$), then there exists a non-zero vector η such that

$$
(\mathbf{A}-\lambda \mathbf{I}) \eta=\zeta
$$

- It then follows that

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \zeta \text { and } \mathbf{x}_{2}(t)=e^{\lambda t} \eta+t e^{\lambda t} \zeta
$$

form a fundamental set of solutions to the system $\mathbf{x}^{\prime}=\mathbf{A x}$.

The Theorem

Theorem

Suppose

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

is a const. coeff. 2×2 system where \mathbf{A} has a repeated eigenvalue λ with geometric multiplicity 1 . Then the general solution has the form

$$
c_{1} e^{\lambda t} \zeta+c_{2}\left(e^{\lambda t} \eta+t e^{\lambda t} \zeta\right)
$$

where ζ is a λ-eigenvector and η satisfies $(\mathbf{A}-\lambda I) \eta=\zeta$.
Equivalently...

The Theorem (restated)

Theorem

Suppose

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

is a const. coeff. 2×2 system where \mathbf{A} has a repeated eigenvalue λ with geometric multiplicity 1 . Then the general solution has the form

$$
e^{\lambda t} \hat{\eta}+t e^{\lambda t} \hat{\zeta}
$$

where $\hat{\eta}=\left(x_{0}, y_{0}\right)$ is an arbitrary initial condition and
$\hat{\zeta}=(\mathbf{A}-\lambda \mathbf{I}) \hat{\eta}$. If $\hat{\zeta}$ is zero, then $\hat{\eta}$ is an eigenvector. Otherwise, $\hat{\zeta}$ is an eigenvector.

Exercises

Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, where
(1) $\mathbf{A}=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right)$
(2) $\mathbf{A}=\left(\begin{array}{cc}4 & -1 \\ 1 & 2\end{array}\right)$

