Systems of First Order ODEs, Part II

Craig J. Sutton craig.j.sutton@dartmouth.edu

Department of Mathematics Dartmouth College

Math 23 Differential Equations Winter 2013

C.J. Sutton Systems of First Order ODEs, Part II

くロト (過) (目) (日)

Outline

- 1 Homogeneous Linear Systems with Constant Coefficients
 - Some Generalities
- 2 Distinct Real Eigenvalues
 - Examples
 - Summary of Equilibria
- 3 Complex Eigenvalues
 - Real Part Non-Zero
 - Purely Imaginary Eigenvalues
 - Summary of Equilibria
- 4 Repeated Eigenvalues
 - Preliminaries
 - An Example
 - General Solution

ヨト イヨト

Some Generalities

Outline

- 1 Homogeneous Linear Systems with Constant Coefficients
 - Some Generalities
- 2 Distinct Real Eigenvalues
 - Examples
 - Summary of Equilibria
- 3 Complex Eigenvalues
 - Real Part Non-Zero
 - Purely Imaginary Eigenvalues
 - Summary of Equilibria
- Repeated Eigenvalues
 - Preliminaries
 - An Example
 - General Solution

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Some Generalities

The Set Up

Consider the general equation

$$\mathbf{x}' = \mathbf{A}\mathbf{x},$$

where **A** is a constant matrix.

- equilibrium solutions correspond to solutions of Ax = 0.
- det A ≠ 0 if and only if x(t) = 0 is the only equilibrium solution.
- When det A ≠ 0 it is interesting to see whether solutions approach or diverge from the equilibrium x(t) = 0 as t→±∞.

ヘロン ヘアン ヘビン ヘビン

The Set Up

Let **A** be a 2×2 matrix

• a solution $\mathbf{x}(t) = (x_1(t), x_2(t))$ of

$$\mathbf{x}' = \mathbf{A}\mathbf{x},$$

Some Generalities

is a curve in the x_1x_2 -plane.

- $\mathbf{x}'(t) = (x'_1(t), x'_2(t))$ is the velocity vector.
- Plotting **Ax** gives us the phase plane.

・ロン ・ 同 と ・ ヨ と ・ ヨ と

æ

Some Generalities

The Strategy

Let **A** be a 2×2 matrix (with det(**A**) \neq 0).

• Suppose
$$\mathbf{x}(t) = \zeta e^{rt}$$
 solves

$$\mathbf{x}' = \mathbf{A}\mathbf{x},$$

where
$$\zeta = (\zeta_1, \ldots, \zeta_n)^t$$
.

• $\mathbf{x}(t) = \zeta e^{rt}$ is a solution if and only if $\mathbf{A}\zeta = r\zeta$.

Moral

Solving $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is equivalent to finding eigenvalues and eigenvectors of \mathbf{A} .

ヘロン ヘアン ヘビン ヘビン

æ

Examples Summary of Equilibria

Outline

- Homogeneous Linear Systems with Constant Coefficients Some Generalities
- 2 Distinct Real Eigenvalues
 - Examples
 - Summary of Equilibria
- 3 Complex Eigenvalues
 - Real Part Non-Zero
 - Purely Imaginary Eigenvalues
 - Summary of Equilibria
- Repeated Eigenvalues
 - Preliminaries
 - An Example
 - General Solution

ヘロア 人間 アメヨア 人口 ア

ъ

Examples Summary of Equilibria

Example 1: Saddle

Let
$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$
, then solve

 $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

- Step 1: Assume solution looks like $\mathbf{x}(t) = \zeta e^{rt}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t) = (0, 0)$ is a saddle.

ヘロン ヘアン ヘビン ヘビン

Homogeneous Linear Systems with Constant Coefficients Distinct Real Eigenvalues

Examples Summary of Equilibria

Example 1: Saddle

C.J. Sutton Systems of First Order ODEs, Part II

ヘロア 人間 アメヨア 人口 ア

ъ

Examples Summary of Equilibria

Example 2: Sink

Let
$$\mathbf{A} = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix}$$
, then solve

 $\mathbf{x}' = \mathbf{A}\mathbf{x}.$

- Step 1: Assume solution looks like $\mathbf{x}(t) = \zeta e^{rt}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t) = (0, 0)$ is a sink.

ヘロン ヘアン ヘビン ヘビン

Examples Summary of Equilibria

Example 2: Sink

C.J. Sutton Systems of First Order ODEs, Part II

ヘロト 人間 ト ヘヨト ヘヨト

3

Examples Summary of Equilibria

Example 3: Source

Let
$$\mathbf{A} = \begin{pmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix}$$
, then solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

- Step 1: Assume solution looks like $\mathbf{x}(t) = \zeta e^{rt}$.
- Step 2: Find eigenvalues of A.
- Step 3: Find the corresponding eigenvectors.
- Step 4: Find the General Solution

The equilibrium solution $\mathbf{x}(t) = (0, 0)$ is a source.

ヘロア 人間 アメヨア 人口 ア

Examples Summary of Equilibria

Example 3: Source

C.J. Sutton Systems of First Order ODEs, Part II

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Examples Summary of Equilibria

Equilibrium Points

Consider a 2 \times 2 constant coefficient system with two nonzero real, distinct eigenvalues $\lambda_1, \lambda_2.$

- If $\lambda_1 < 0 < \lambda_2$, then the origin is a saddle.
- If λ₁ < λ₂ < 0, then the origin is a sink. All solutions tend to (0,0) as t → ∞, and most tend towards (0,0) in the direction of the λ₂-eigenvector. Why?
- If 0 < λ₂ < λ₁, then (0,0) is a source. All solutions (except the equil. sol.) go to infinity as t → ∞, and most solution curves *leave* the origin in the direction of the λ₂-eigenvector. Why?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Examples Summary of Equilibria

Equilibrium Points

Question

What happens if $\lambda_1 = 0$ and $\lambda_2 \neq 0$?

C.J. Sutton Systems of First Order ODEs, Part II

ヘロン ヘアン ヘビン ヘビン

ъ

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Outline

- Homogeneous Linear Systems with Constant Coefficients
 - Some Generalities
- 2 Distinct Real Eigenvalues
 - Examples
 - Summary of Equilibria
- 3 Complex Eigenvalues
 - Real Part Non-Zero
 - Purely Imaginary Eigenvalues
 - Summary of Equilibria
- Repeated Eigenvalues
 - Preliminaries
 - An Example
 - General Solution

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Useful Facts

Theorem

Let **A** be a 2 \times 2 matrix with real entries and let $\phi(t)$ be a complex valued solution to

$$\mathbf{x}' = \mathbf{A}\mathbf{x},$$

then

- $\overline{\phi(t)}$ is also a solution
- **2** and, therefore, $\operatorname{Re}(\phi(t))$ and $\operatorname{Im}(\phi(t))$ are also solutions.

くロト (過) (目) (日)

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Useful Facts

Theorem

Let **A** be a 2 × 2 matrix with **real** entries and and suppose $\lambda = \mu + i\nu$ ($\nu \neq 0$) is an eigenvalue of **A** with a corresponding eigenvector λ . Then $\overline{\lambda} = \mu - i\nu$ is an eigenvalue of **A** and $\overline{\zeta}$ is a corresponding eigenvector.

イロト イポト イヨト イヨト

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Useful Facts

Theorem

Let **A** be a 2 × 2 real matrix with complex eigenvalues $\lambda_1 = \mu + i\nu$ and $\lambda_2 = \mu - i\nu$, where $\nu \neq 0$. Let ζ be an eigenvector. Then

()
$$\zeta = V + i W$$
, where $V, W \in \mathbb{R}^2$ are non-zero.

2 $V = \text{Re}(\zeta)$ and $W = \text{Im}(\zeta)$ are linearly independent vectors. In particular, $V, W \neq \mathbf{0}$.

Why?

ヘロト ヘアト ヘビト ヘビト

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

A Strategy

Suppose A has complex eigenvalues $\lambda = \mu + i\nu$, $\nu \neq 0$. To solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$ we:

• Assume
$$\mathbf{x}(t) = e^{\lambda t} \zeta$$

Sind eigenvector $\zeta = \mathbf{V} + i \mathbf{W}$ associated to λ

3
$$\mathbf{x}(t) = e^{\lambda t} \zeta$$
 is a complex valued solution.

Then {Re(x(t)), Im(x(t))} forms a fundamental set of real-valued solutions. Why?

・ロト ・ 理 ト ・ ヨ ト ・

1

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Repeated Eigenvalues

Example I: Real Part Non-Zero

Let
$$\mathbf{A} = \begin{pmatrix} -2 & -3 \\ 3 & -2 \end{pmatrix}$$
, then solve

 $\mathbf{x}' = \mathbf{A}\mathbf{x}.$

• Step 1: Assume solution looks like

$$\mathbf{x}(t) = \zeta \mathbf{e}^{rt}$$

Step 2: Find eigenvalues of A

$$\lambda_1 = -2 + 3i, \lambda_2 = -2 - 3i$$

• Step 3: Find the corresponding eigenvectors.

$$\zeta_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}, \ \zeta_2 = \begin{pmatrix} 1 \\ +i \end{pmatrix}$$

æ

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Example I: Real Part Non-Zero

• Step 4: A non-trivial complex solution is given

$$\phi(t) = e^{\lambda_1 t} \zeta_1 = e^{-2t} \left(\begin{array}{c} \cos(3t) + i\sin(3t) \\ \sin(3t) - i\cos(3t) \end{array} \right)$$

• Step 5: The general solution is given by

$$\mathbf{x}(t) = c_1 \operatorname{Re}(\phi(t)) + c_2 \operatorname{Im}(\phi(t))$$

= $c_1 e^{-2t} \begin{pmatrix} \cos(3t) \\ \sin(3t) \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} \sin(3t) \\ -\cos(3t) \end{pmatrix}$

The equilibrium solution $\mathbf{x}(t) = (0, 0)$ is a spiral point.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Homogeneous Linear Systems with Constant Coefficients Distinct Real Eigenvalues

Complex Eigenvalues

Repeated Eigenvalue

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Example I: Real Part Non-Zero

ヘロン ヘアン ヘビン ヘビン

ъ

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Example II: Purely Imaginary Eigenvalues

Let
$$\mathbf{B} = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$
, then solve $\mathbf{x}' = \mathbf{B}\mathbf{x}$.

• Step 1: Assume solution looks like

$$\mathbf{x}(t) = \zeta \mathbf{e}^{rt}.$$

$$\lambda_1 = 2i, \ \lambda_2 = -2i.$$

• Step 3: Find the corresponding eigenvectors

$$\zeta_1 = \begin{pmatrix} 1 \\ +i \end{pmatrix}, \ \zeta_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

くロト (過) (目) (日)

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Example II: Purely Imaginary Eigenvalues

• Step 4: Find Complex Solutions

$$\phi(t) = e^{\lambda_1 t} \zeta_1 = \begin{pmatrix} \cos(2t) + i\sin(2t) \\ -\sin(2t) + i\cos(2t) \end{pmatrix}$$

• Step 5: The General Solution is given by

$$\mathbf{x}(t) = c_1 \operatorname{Re}(\phi(t)) + c_2 \operatorname{Im}(\phi(t)) \\ = c_1 \left(\begin{array}{c} \cos(2t) \\ -\sin(2t) \end{array} \right) + c_2 \left(\begin{array}{c} \sin(2t) \\ \cos(2t) \end{array} \right)$$

The equilibrium solution $\mathbf{x}(t) = (0, 0)$ is a center.

ヘロト ヘワト ヘビト ヘビト

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Repeated Eigenvalues

Example II: Purely Imaginary Eigenvalues

ヘロト 人間 ト ヘヨト ヘヨト

Real Part Non-Zero Purely Imaginary Eigenvalues Summary of Equilibria

Equilibrium Points

Consider a 2 × 2 constant coefficient system with complex eigenvalues $\lambda = \alpha \pm i\beta \ (\beta \neq 0)$.

- If α < 0, the solutions spiral towards the origin as t → ∞ and we say (0,0) is a spiral sink.
- If α > 0, the solutions spiral away from the origin as t → ∞ and we say (0,0) is a spiral source.
- If α = 0, the solutions are periodic and we say (0,0) is a center.

・ロト ・ 理 ト ・ ヨ ト ・

Preliminaries An Example General Solution

Outline

- Homogeneous Linear Systems with Constant Coefficients
 - Some Generalities
- 2 Distinct Real Eigenvalues
 - Examples
 - Summary of Equilibria
- 3 Complex Eigenvalues
 - Real Part Non-Zero
 - Purely Imaginary Eigenvalues
 - Summary of Equilibria
- 4 Repeated Eigenvalues
 - Preliminaries
 - An Example
 - General Solution

ヘロト ヘワト ヘビト ヘビト

э

Preliminaries An Example General Solution

The Set Up

Let **A** be a 2 \times 2 real matrix with one repeated real eigenvalue $\lambda.$ There are two cases.

- **(1)** λ has two linearly independent eigenvectors ζ_1 and ζ_2 .
- 2 λ has only one linearly indep. eigenvector ζ .

ヘロト 人間 ト ヘヨト ヘヨト

Preliminaries An Example General Solution

The Set Up

Case 1: λ has two linearly independent eigenvectors ζ_1 and ζ_2 .

- General solution is $\phi(t) = c_1 e^{\lambda t} \zeta_1 + c_2 e^{\lambda t} \zeta_2$.
- $\lambda > 0$ then origin is a source. $\lambda < 0$ origin is a sink.

Case 2: λ has one linearly independent eigenvector ζ .

- $e^{\lambda t} \zeta$ is a non-trivial solution.
- How do you get a fundamental set of solutions? That is, how do we get the general solution? The key will be the existence of a vector η such that

$$(\mathbf{A} - \lambda \mathbf{I})\eta = \zeta.$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Preliminaries An Example General Solution

Example: Repeated Eigenvalue

Let
$$\mathbf{A} = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$$
, then solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

- There is one eigenvalue of **A**: $\lambda = -2$
- mult_{geom}(-2) = 1. In particular, the eigenvectors associated to λ = -2 are all scalar multiples of

$$\zeta = \left(\begin{array}{c} \mathbf{1} \\ \mathbf{0} \end{array}\right)$$

•
$$\mathbf{x}_1(t) = e^{\lambda t} \zeta = e^{-2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 is a non-trivial solution.

ヘロン ヘアン ヘビン ヘビン

Preliminaries An Example General Solution

Example: Repeated Eigenvalue

The system
$$\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix} \mathbf{x}$$
 implies

•
$$\frac{dy}{dt} = -2y$$
, hence $y(t) = y_0 e^{-2t}$

• Then
$$\frac{dx}{dt} = -2x + y_0 e^{-2t}$$

• So
$$x(t) = y_0 t e^{-2t} + x_0 e^{-2t}$$

Hence, the general solution is given by

$$\phi(t) = x_0 e^{-2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_0 \left(e^{-2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t e^{-2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

• Notice that $\eta = (0, 1)^t$ satisfies:

$$(\mathbf{A} - (-2)I)\eta = \zeta$$

ヘロン ヘアン ヘビン ヘビン

Preliminaries An Example General Solution

Example: Repeated Eigenvalue

C.J. Sutton Systems of First Order ODEs, Part II

くロト (過) (目) (日)

э

Preliminaries An Example General Solution

Useful Facts

Theorem

Let **A** be a 2 × 2 real matrix with one repeated real eigenvalue λ . And suppose the λ -eigenvectors are of the form $c\zeta$ for any $c \neq 0 \in \mathbb{R}$ (i.e., $\text{mult}_{\text{geom}}(\lambda) = 1$), then there exists a non-zero vector η such that

$$(\mathbf{A} - \lambda \mathbf{I})\eta = \zeta.$$

It then follows that

$$\mathbf{x}_{1}(t) = e^{\lambda t} \zeta$$
 and $\mathbf{x}_{2}(t) = e^{\lambda t} \eta + t e^{\lambda t} \zeta$

form a fundamental set of solutions to the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

イロト イポト イヨト イヨト

Preliminaries An Example General Solution

The Theorem

Theorem

Suppose

$\bm{x}' = \bm{A}\bm{x}$

is a const. coeff. 2 × 2 system where **A** has a repeated eigenvalue λ with geometric multiplicity 1. Then the general solution has the form

$$c_1 e^{\lambda t} \zeta + c_2 (e^{\lambda t} \eta + t e^{\lambda t} \zeta)$$

where ζ is a λ -eigenvector and η satisfies $(\mathbf{A} - \lambda \mathbf{I})\eta = \zeta$.

Equivalently...

・ロット (雪) () () () ()

Preliminaries An Example General Solution

The Theorem (restated)

Theorem

Suppose

$$\bm{x}' = \bm{A}\bm{x}$$

is a const. coeff. 2 × 2 system where **A** has a repeated eigenvalue λ with geometric multiplicity 1. Then the general solution has the form

 $e^{\lambda t}\hat{\eta} + te^{\lambda t}\hat{\zeta}$

where $\hat{\eta} = (x_0, y_0)$ is an arbitrary initial condition and $\hat{\zeta} = (\mathbf{A} - \lambda \mathbf{I})\hat{\eta}$. If $\hat{\zeta}$ is zero, then $\hat{\eta}$ is an eigenvector. Otherwise, $\hat{\zeta}$ is an eigenvector.

ヘロト ヘアト ヘビト ヘビト

Preliminaries An Example General Solution

Exercises

Find the general solution to the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$$

ヘロン ヘアン ヘビン ヘビン

ъ