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The Definition

A system of first order ODE:s is a system of equations of the form

X1/ = F1(t7X1aX27"'aXn)
(1.1)
x, = Fn(t,x1,Xe,...,Xn)
where Xj, ..., Xp are functions of the independent variable . A

solution of the system on the iterval o« < t < (3 is a set of n functions

X1 = d1(t), ..., Xp = on(l)

that are differentiable on v < t < (3 and that satisfy the system for all
a<t<p.
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Example

@ Consider the system

@ A solution is given by

(x(1), y()) = (sin(t), cos(t))
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@ Consider the system
)
y(t) = vax(t)-2y(1)

@ Every solution to this system is of the form

() = ¢i(e7, vV2e™!) + cp(—V2e ¥ )

@ Note: Solving systems like the one above will lead us to
consider eigenvalues and eigenvectors.
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Existence & Uniqueness

Theorem

In Eq. 1.1 suppose the functions Fy, ..., F, and
OF1/0xq,...,0F/0xn,...,0Fy/0Xq,...,0F,/0x, are
continuous in an open region R of the txi xo - - - X,-space and let
(to,x9,...,x3) € R™. Then there is an interval |t — ty| < h in
which there exists a unique solution x; = ¢1(t), ..., Xn = ¢n(t)
of the system Eq. 1.1 such that

(¢1(f0), - - - nlto)) = (x7,..., xJ).
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Linear System

Definition
The system Eq. 1.1 is said to be linear if the functions
Fi(t,x1,...,Xn), ..., Fn(t, X1,..., Xn) are linear in the variables

Xq, ..., Xp. In which the system has the form
X = pu(t)x + - pia(t)Xn+ 1(1)
: (1.2)
Xy = Pm(t)X1 + - Pan(t)Xn + gn(t)

We’ll say it is homogeneous in the case g = - - - gp = 0. Otherwise it
is said to be non-homogeneous.
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Existence & Uniqueness

Theorem

If the functions p(t) (1 < i,j<n)andgy,...,gnin Eq. 1.2 are
continuous on an open interval | - o < t < 3, then there exists a
unique solution xy = ¢1(t), ..., Xn = ¢n(t) of the system Eq. 1.2
defined on all of | such that

(é1(t0), - én(to)) = (X7, -, X3).

C.J. Sutton Systems of First Order ODEs, Part |



Introduction o )
Definitions and Existence & Uniqueness Theorems

Example

Spring-Mass System

Consider
@ Two blocks of mass my and mo.
© Three springs with spring constants k4, ko and k3.
© Assume an eternal force of F;(t) and Fx(t) acting on the

masses.
We get (using arguments similar to those used for the hanging
block):
mixy = —(ki +ka)xi + keXo + Fi(1)

mgxé’ = k2X1 — (k2 + k3)X2 + Fg(t)
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Spring-Mass System

© Now make the substitution

/ /
Yi=X1,Y2=X2,)3 = X{Ya4 = X5

© Then we get the following system of First-Order ODEs

Yi. = ¥

Yo = Va
]

Y3 = E(—(/ﬂ + k2)y1 + kay2 + F1(t))
1

Yy = Hz(kz}ﬁ — (ko + k3)y2 + Fa(t))
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2nd Order Linear ODE to System of 1st Order ODEs

@ Consider the 2nd Order ODE

U+ p(t + q(t)u = g(t)

@ letxy=vuand xx = U'.
@ Then our ODE is equivalent to

X0 = xl()
X%(1) = —a(xi(t) — pt)xe(t) + 9(t)

@ Moral: Second-order linear ODEs are really just systems
of First-Order linear ODEs.
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m x n Matrices

An m x n-matrix Ais a rectangular array of complex numbers of

the form
ayn a2 - @in
a9 do2 -+ a2
A= ) )
am Aamz - damn

@ The matrix is said to be square if m = n.
@ A (column) vector is an m x 1 matrix.
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Matrix Operations

Let A = (a;) be an m x n-matrix A

@ The transpose of A, denoted A, is the n x m matrix obtained by
interchanging the rows and columns of A. Thus A’ = (a;).

@ The conjugate of A, denoted A is the m X n matrix obtained by
replacing a; by its conjugate &j;. So, A = (&;).
© The adjoint of A is given by A* = Al
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New Matrices from Old

0 2—-9 -4

1+2i 0
Q A= 3 2—-9i

LetA:<1+2I 8 . 5_’),then

5-1i 0

o (1-2i 3 5+4i
9A‘< 0 249 —4>

1-2i 0
QA= 3 2+9 |
5+i -4
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Matrix Addition & Multiplication

@ Let A= (g;) and B = (bj) be m x n-matrices, then
A+ B = (aj + by).
@ o € C, then oA = (aay)

Q If A= (aj)is mx nand B = (by) is n x r,then AB is the
m x r matrix AB = (¢;) where

n
Cj = Z a,-kbk,-.
k=1
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Inner Product

X1 14
Let x = o,y = : € C", be two vectors.

Xn Yn
@ their inner product is the (complex) number

n
<x,y>=x'y=>"xjy.
1

@ The length of x is given by
IIx|| =< x,x >z

© x and y are said to be orthogonal if < x, y >= 0.
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Inner Product

1 3
Let x = —1 and y = 0 , then
3 —1
@ ||x|| =v11
@ x Ly.
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The Determinant: the 2 x 2-case

Let A= (
given by

i Z > be a 2 x 2 matrix then the determinant is

det(A) = ad — bc.
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The Determinant: the 3 x 3-case

air a2z a3
LetA=| a»y ax ao3 | be a3 x 3 matrix then the

d31 dz2 dass
determinant is given by

det(A) = a11(axass — aspaps) — aiz2(@xass — asz1as)
+ay3(ax1ase — as1a)
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The Determinant: the General Case

Let A= (a;) be an n x n matrix

@ Let M be the (n— 1) x (n— 1) matrix formed by deleting
the i-th row and j-th column from A.
@ The determinant of A is the scalar given by
n .
det(A) =) “(—1)Y*"ay;det(My;).
j=1

C.J. Sutton Systems of First Order ODEs, Part |



Matrices
Linear Algebra Linear Independence
Systems and Eigenvalues

The Determinant: Exercises

Compute the determinant of the following matrices.
1 2 3
QA=|4 1 2
1 0 1
2 3
oe-(%7)
a—A>\ b
QC( c d—>\>
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Special Matrix: The ldentity

The identity matrix / is the n x n matrix formed by placing ones
down the diagonal and zeroes in all the other entries. So we

have
1 00 0
010 0
/=1 0 0 1 0
000 --- 1

If Ais a square n x n matrix then

Al=1A=A.
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The Inverse

Let Abe a square n x n matrix. A is said to be invertible or
non-singular if there exists an n x n matrix B such that

BA=AB=1.

If such a matrix exists it is unique and we denote it by A=,

Let A be a square n x n matrix. A is invertible if and only if
det(A) # 0.
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Computing A~ via Cofactors

Let A be a square n x n matrix.
@ The cofactor associated to a; is

Cj = (—1)" det M,

where M is the (n — 1) x (n— 1) matrix formed by deleting
the i-th row and j-th column.

@ If Ais invertible, then
A7 = (by).,

Gi
where b = detA-
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Computing A~ via Gaussian Elimination

@ Elementary Row Operations

@ interchange two rows
@ multiply a row by a non-zero scalar
@ adding any multiple of one row to another.

@ Transforming A through a sequence of elem. row ops. is
called Gaussian elimination or row reduction.

@ Ainvertible, then there is a sequnce of elem. row ops.
which transforms Ato /and /to A1,
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Computing A~ via Gaussian Elimination

1 0 2
Let A= 1 3 1 |]. Use Gaussian elimination to show that
1 0 1
-1 0 2
A= 0 1/3 —1/3
1 0 —1
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Matrix Functions

Let A(t) = (aj(t)) and B(t) = (b;(t)) be matrix functions, then:

o SA(t) = (ay()
@ If Aand B are n x mthen

d / /
A+ B(D) = A1) + B (1),

@ If Ais nx rand Bis r x m, then

d

SAWMB() = A(DB(D) + ADB (1),
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The Definition

Definition
Kk vectors Xy, ..., Xx € R are said to be linearly dependent if we can
find numbers ¢y, ..., Cx € R not all zero such that

C1)_(’1—|—-"—|—Ck)_(’k:0.

Otherwise we say the vectors are linearly independent.

@ (1,0) and (0, 1) are linearly independent in R?.
@ (1,0,0),(0,1,0) and (1,1, 0) are linearly dependent in RS,
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A Test for Linear Independence

Let X = (X41,...,Xn1), ... X" = (X4p,..., Xnn) be n vectors in
R", then they are linearly independent if and only if det(X) # 0,
where X = (Xj).

Are the following sets of vectors lin. indep.?
Q@ x( =(1,23),x?® =(1,-1,0)and x®) = (0,-1,1)
Q@ x( =(1,0,3), x® = (0,1,1) and x® = (-1,3,0)
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Systems & Matrices

A system of n equations in n unknowns

ay Xy + apXe + - +ampXn = by

amXi + ampXo+---+amxn = bp

can be expressed as a matrix equation

Ax =b.
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Systems & Matrices

The equation AX = b is said to be
@ homogeneous, if b =0

@ inhomogeneous if b # 0

Let A be an n x n matrix and b € R" a vector. Then
@ Ax = b has a unique solution if and only if det(A) # 0. In
which case the solution is x = A~'b.
@ ifdet(A) = 0, then Ax = b has no solutions or it has
infinitely many solutions.
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Systems & Matrices

Let A = (a;) be an n x n matrix

@ Then we can think of A as a (linear) map A : R" — R".

@ To solve the equation Ax = b means to find (all) x € R”
such that Ax = b € R".
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Eigenvectors & Eigenvalues

Consider the matrix A = ( g ? )
2

@ A scales the vector (4 = ( (1)

@ (Actually, A scales any non-zero vector of the form
c< (1) ) by a factor of 2.)

> by a factor of 2

@ A scales the vector ¢ = < (1) > by a factor of J

@ (Actually, A scales any non-zero vector of the form
c( ? > by a factor of 3.)
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Eigenvectors & Eigenvalues

Consider the matrix B = ( 53 (1) )

@ B scales the vector ¢4 = ( 1 > by a factor of —3.

0
@ (Actually, B scales any non-zero vector of the form

c( g) ) by a factor of —3.)
. 0
@ B fixes the vector (» = < 1 )

@ (Actually, B fixes any non-zero vector of the form ¢ ( ? >
is fixed by B.)
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Eigenvectors & Eigenvalues

Consider the matrix C = ( _57 g >

@ C scales the vector (; = ( (1) ) by a factor of 5.

@ (Actually, C scales any non-zero vector of the form
c< ? > by a factor of 5.)

@ C does not scale in any other directions.
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Eigenvectors & Eigenvalues

Consider the matrix D = ( ; ? >

@ D scales the vector (4 = ( 1 > by a factor of 3.

@ (Actually, D scales any non-zero vector of the form
c< 1 > by a factor of 3.)

_11 ) by a factor of —1.
@ (Actually, D scales any non-zero vector of the form
c( _11 > by a factor of —1.)

@ D scales the vector (> = (

@ How did we know this?
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Eigenvectors & Eigenvalues

@ Given a matrix A it would be nice to find the non-zero
vectors X such that
AX = \X.

@ Equivalently, we want A\ € C and x # 0 such that

Ax — \x=0. (2.1)
@ There is a non-zero solution x to Eq 2.1 if and only if
det(A — Al) = 0.
@ So, the first order of business is to find those values of A
such that

det(A — Al) = 0.
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Eigenvectors & Eigenvalues

Definition
Given an N X N matrix A its characteristic polynomial is the
polynomial of degree n given by

A(t) = det(A — t).

A root A of A(t) is called an eigenvalue of the matrix A and a
corresponding non-zero vector X such that

Ax - )Xx=0

is an eigenvector corresponding to \.
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Eigenvectors & Eigenvalues

Fora 2 x 2-matrix A = i 2 ) its characteristic polynomial

is the degree 2 polynomial given by

Alt) = det(a;t dbt)

= t2—(a+b)t+ (ad — bc)
= 2 —Tr(A)t+detA
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Multiplicities

Let X be an eigenvalue of an n x n matrix A. Then

@ the algebraic multiplicity of \, denoted multye(\), is the number
of times \ appears as a root of A(t).

@ the geometric multiplicity of X, denoted Multgeom(A), is the
maximal number of linearly independent eigenvectors associated
to A.

We note that Multeeom(A) < Multyg(X) < n.
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Example |

Find the eigenvalues and eigenvectors of the matrix
5 —1
A-(5 1)
@ The characteristic polynomial of A is:

A(N) =X —6A+8

@ So the eigenvalues of A are A =2 and A\, = 4.
@ We now want to find the corresponding eigenvectors...
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Example | (cont'd)

e (= ( G > # 0 is an eigenvector corresponding to Ay if

G
and only if
(A—X\hk)=0.
@ This is equivalent to the system of equations
3G1—¢ =0
3Gt—¢ =0

@ Hence, the eigenvectors are of the form

=o(3)
for ¢ # 0.
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Example | (cont'd)

Casell: \» =4

e (= ( g; > # 0 is an eigenvector corresponding to Az if

and only if
(A \2k)¢ = 0.
@ This is equivalent to the system of equations

G—C¢ =0
3G1—3¢ =0
@ Hence, the eigenvectors are of the form

(1)
for ¢ # 0.
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Example Il

Find the eigenvalues and eigenvectors of the matrix

3 2 4
A= 2 0 2
4 2 3

@ The characteristic polynomial of A is:
AN) = -2 +6)2+ 15\ + 8

@ The eigenvalues of Aare Ay = Ao = —1 and \3 = 8.
@ We now want to find the corresponding eigenvectors...
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Example Il (cont'd)

Casel: \{ = \o = —1

Gt
e (= ( (o ) # 0 is an eigenvector corresponding to

(3
A = Ao if and only if

(A— k)¢ =0.
@ This is equivalent to the system of equations

401 +2¢+4¢z = 0
201+ ¢+2¢ = 0
461 +20+4¢ = 0
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Example Il (cont'd)

Casel: \{ = \p = —1
@ Hence, the eigenvectors corresponding to Ay = A\p = —1
are of the form

1 0
¢ = ¢y -2 + Co -2
0 1

for ¢4, c> not both zero.

@ So, the eigenspace corresponding to the eigenvalue —1 is
two-dimensional.
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Example Il (cont'd)

Casell: \3 =8

Gt
e (= ( (o ) = 0 is an eigenvector corresponding to

(3
A1 = Ao if and only if

(A—A3h)¢=0.
@ This is equivalent to the system of equations

—561 + 2C2 -+ 4<3 =0
2¢1 —8(+2¢(3 = 0
4(1 +2¢2 —5¢ = 0
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Example Il (cont'd)

Casell: \3 =8
@ Hence, the eigenvectors corresponding to A3 = 8 are of
the form
2
(=c| 1
2
for ¢ # 0.

@ So, the eigenspace corresponding to the eigenvalue 8 is
one-dimensional.
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Linear Algebra

Exercises

Find the eigenvalues and eigenvectors of the following matrices

1 2
°a=(3 ¢)
7 3
o (% 7)
2 2
0 1 1
@c=|10 1
110
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Examples

A general system of first-order linear ODEs is of the form
X'(t) = P(t)x(t) + g(1),

x(f) g:(1)
where x(t) = XZ:(t) ,9(t) = 92:“) and
Xn(t) gn(1)

p11(t) pi2(t) -+ pia(t)

P21(t) p22(t) -+ p2n(l)
: : 0 :

Pn1(t)  pn2(t) -+ pan(t)

P(t) =
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Principle of Superposition

Proposition
Let x()(¢), ..., x\")(t) be vector functions which solve

Then for any ¢4, ..., ch, € R we see that
x(8) = e xX(8) + - - 4+ epx(M (1)

also solves the equation.
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The Wronskian

Let x()(1), ..., x(N)(¢) be vector functions, then the Wronskian

is defined by
WxM, o xM](t) = det X(¢),
where
xi1(t) x2(t) - Xin(t)
X(f) = X21_(T) Xzz_(f) X‘?'f(t)
X () Xee(t) - Xan(2)
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The Wronskian

Proposition

The vector functions x(V(t), ..., x(")(t) are linearly independent
at ty if and only if

WixM o x(M](t) # 0.
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The Wronskian

Proposition
Suppose x(1), ..., x(")(t) are solutions to

X =P(t)x, a<t<p (8.1)

such that W[x(M" ... x(M](t) # 0 foralla < t < 3. Then for
each x = ¢(t) solving Eq. 3.1 there exist unique constants
Ci,...,Cn € R such that

o(t) = crx(E) + - - + cpx(M(8).

In this case we call {x()(t),...,x("(t)} a fundamental set of
solutions.
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The Wronskian

If xC(t), . (n)(t) are solutions to
X =P(t)x, a < t<p,

then on this interval W[x("), ... x(M](t) is either identically zero
or never vanishes ona < t < (5.

Corollary
A homogeneous linear system of the form

X =P(t)x, a<t<p,

always has a fundamental set of solutions.

C.J. Sutton Systems of First Order ODEs, Part |




	Introduction
	Definitions and Existence & Uniqueness Theorems
	Example

	Linear Algebra
	Matrices
	Linear Independence
	Systems and Eigenvalues

	Systems of 1st Order Linear ODEs: Theory

