Systems of First Order ODEs, Part I

Craig J. Sutton craig.j.sutton@dartmouth.edu

Department of Mathematics Dartmouth College

Math 23 Differential Equations Winter 2013

ヘロン 人間 とくほ とくほ とう

Outline

Introduction

- Definitions and Existence & Uniqueness Theorems
- Example

2 Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

Systems of 1st Order Linear ODEs: Theory

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 🗇 ▶

Outline

- Definitions and Existence & Uniqueness Theorems
- Example

2 Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

3 Systems of 1st Order Linear ODEs: Theory

くロト (過) (目) (日)

The Definition

Definition

A system of first order ODEs is a system of equations of the form

$$\begin{array}{rcl}
x_1' &=& F_1(t, x_1, x_2, \dots, x_n) \\
&\vdots \\
x_n' &=& F_n(t, x_1, x_2, \dots, x_n)
\end{array}$$
(1.1)

Definitions and Existence & Uniqueness Theorems

where x_1, \ldots, x_n are functions of the independent variable *t*. A solution of the system on the iterval $\alpha < t < \beta$ is a set of *n* functions

$$\mathbf{x}_1 = \phi_1(t), \ldots, \mathbf{x}_n = \phi_n(t)$$

that are differentiable on $\alpha < t < \beta$ and that satisfy the system for all $\alpha < t < \beta$.

Example

Consider the system

$$\begin{array}{rcl} x'(t) &=& y(t) \\ y'(t) &=& -x(t) \end{array}$$

Definitions and Existence & Uniqueness Theorems

A solution is given by

$$(x(t), y(t)) = (\sin(t), \cos(t))$$

ヘロン 人間 とくほとく ほとう

Example

Consider the system

$$\begin{array}{rcl} x'(t) &=& -3x(t) + \sqrt{2}y(t) \\ y'(t) &=& \sqrt{2}x(t) - 2y(t) \end{array}$$

Definitions and Existence & Uniqueness Theorems

Every solution to this system is of the form

$$\Phi(t) = c_1(e^{-t}, \sqrt{2}e^{-t}) + c_2(-\sqrt{2}e^{-4t}, e^{-4t})$$

• Note: Solving systems like the one above will lead us to consider eigenvalues and eigenvectors.

ヘロト 人間 ト ヘヨト ヘヨト

Definitions and Existence & Uniqueness Theorems Example

Existence & Uniqueness

Theorem

In Eq. 1.1 suppose the functions F_1, \ldots, F_n and $\partial F_1/\partial x_1, \ldots, \partial F_1/\partial x_n, \ldots, \partial F_n/\partial x_1, \ldots, \partial F_n/\partial x_n$ are continuous in an open region R of the $tx_1x_2 \cdots x_n$ -space and let $(t_0, x_1^0, \ldots, x_n^0) \in \mathbb{R}^{n+1}$. Then there is an interval $|t - t_0| < h$ in which there exists a unique solution $x_1 = \phi_1(t), \ldots, x_n = \phi_n(t)$ of the system Eq. 1.1 such that

$$(\phi_1(t_0),\ldots,\phi_n(t_0))=(x_1^0,\ldots,x_n^0).$$

イロト イポト イヨト イヨト 三日

Linear System

Definition

The system Eq. 1.1 is said to be linear if the functions $F_1(t, x_1, ..., x_n), ..., F_n(t, x_1, ..., x_n)$ are linear in the variables $x_1, ..., x_n$. In which the system has the form

$$\begin{aligned}
x'_{1} &= p_{11}(t)x_{1} + \cdots p_{1n}(t)x_{n} + g_{1}(t) \\
&\vdots \\
x'_{n} &= p_{n1}(t)x_{1} + \cdots p_{nn}(t)x_{n} + g_{n}(t)
\end{aligned} (1.2)$$

Definitions and Existence & Uniqueness Theorems

We'll say it is homogeneous in the case $g_1 = \cdots = g_n = 0$. Otherwise it is said to be non-homogeneous.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definitions and Existence & Uniqueness Theorems Example

Existence & Uniqueness

Theorem

If the functions $p_{ij}(t)$ $(1 \le i, j \le n)$ and g_1, \ldots, g_n in Eq. 1.2 are continuous on an open interval $I : \alpha < t < \beta$, then there exists a unique solution $x_1 = \phi_1(t), \ldots, x_n = \phi_n(t)$ of the system Eq. 1.2 defined on all of I such that

$$(\phi_1(t_0),\ldots,\phi_n(t_0))=(x_1^0,\ldots,x_n^0).$$

ヘロト ヘアト ヘビト ヘビト

Definitions and Existence & Uniqueness Theorems Example

Spring-Mass System

Consider

- Two blocks of mass m_1 and m_2 .
- 2 Three springs with spring constants k_1, k_2 and k_3 .
- Solution Assume an eternal force of $F_1(t)$ and $F_2(t)$ acting on the masses.

We get (using arguments similar to those used for the hanging block):

$$m_1 x_1'' = -(k_1 + k_2)x_1 + k_2 x_2 + F_1(t)$$

$$m_2 x_2'' = k_2 x_1 - (k_2 + k_3)x_2 + F_2(t)$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Definitions and Existence & Uniqueness Theorems Example

Spring-Mass System

Ow make the substitution

$$y_1 = x_1, y_2 = x_2, y_3 = x_1'y_4 = x_2'$$

Then we get the following system of First-Order ODEs

$$y'_{1} = y_{3}$$

$$y'_{2} = y_{4}$$

$$y'_{3} = \frac{1}{m_{1}}(-(k_{1} + k_{2})y_{1} + k_{2}y_{2} + F_{1}(t))$$

$$y'_{4} = \frac{1}{m_{2}}(k_{2}y_{1} - (k_{2} + k_{3})y_{2} + F_{2}(t))$$

・ロト ・ 理 ト ・ ヨ ト ・

Definitions and Existence & Uniqueness Theorems Example

2nd Order Linear ODE to System of 1st Order ODEs

• Consider the 2nd Order ODE

$$u'' + p(t)u' + q(t)u = g(t)$$

• Let
$$x_1 = u$$
 and $x_2 = u'$.

Then our ODE is equivalent to

$$\begin{array}{rcl} x_1'(t) &=& x_2(t) \\ x_2'(t) &=& -q(t)x_1(t) - p(t)x_2(t) + g(t) \end{array}$$

• **Moral:** Second-order linear ODEs are really just systems of First-Order linear ODEs.

ヘロン 人間 とくほ とくほ とう

Matrices Linear Independence Systems and Eigenvalues

Outline

Introduction

- Definitions and Existence & Uniqueness Theorems
- Example

2 Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

3 Systems of 1st Order Linear ODEs: Theory

ヘロト ヘワト ヘビト ヘビト

Matrices Linear Independence Systems and Eigenvalues

$m \times n$ Matrices

An $m \times n$ -matrix A is a rectangular array of complex numbers of the form

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- The matrix is said to be square if m = n.
- A (column) vector is an $m \times 1$ matrix.

ヘロト ヘアト ヘビト ヘビト

ъ

Matrices Linear Independence Systems and Eigenvalues

Matrix Operations

Definition

Let $A = (a_{ij})$ be an $m \times n$ -matrix A

- The transpose of *A*, denoted A^T , is the $n \times m$ matrix obtained by interchanging the rows and columns of *A*. Thus $A^t = (a_{ji})$.
- 2 The conjugate of A, denoted \overline{A} is the $m \times n$ matrix obtained by replacing a_{ij} by its conjugate \overline{a}_{ij} . So, $\overline{A} = (\overline{a}_{ij})$.
- **3** The adjoint of *A* is given by $A^* = \overline{A}^t$.

ヘロト ヘアト ヘビト ヘビト

Matrices Linear Independence Systems and Eigenvalues

New Matrices from Old

Let
$$A = \begin{pmatrix} 1+2i & 3 & 5-i \\ 0 & 2-9i & -4 \end{pmatrix}$$
, then
1 $A^{t} = \begin{pmatrix} 1+2i & 0 \\ 3 & 2-9i \\ 5-i & 0 \end{pmatrix}$
2 $\bar{A} = \begin{pmatrix} 1-2i & 3 & 5+i \\ 0 & 2+9i & -4 \end{pmatrix}$
3 $A^{*} = \begin{pmatrix} 1-2i & 0 \\ 3 & 2+9i \\ 5+i & -4 \end{pmatrix}$.

ヘロト 人間 とくほとくほとう

Matrices Linear Independence Systems and Eigenvalues

Matrix Addition & Multiplication

• Let $A = (a_{ij})$ and $B = (b_{ij})$ be $m \times n$ -matrices, then $A + B = (a_{ij} + b_{ij})$.

2
$$\alpha \in \mathbb{C}$$
, then $\alpha A = (\alpha a_{ij})$

If $A = (a_{ij})$ is $m \times n$ and $B = (b_{ij})$ is $n \times r$, then AB is the $m \times r$ matrix $AB = (c_{ij})$ where

$$c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}.$$

ヘロン 人間 とくほ とくほ とう

ъ

Matrices Linear Independence Systems and Eigenvalues

Inner Product

Let
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{C}^n$, be two vectors.

their inner product is the (complex) number

$$\langle x, y \rangle = x^t \overline{y} = \sum_{1}^n x_i \overline{y}_i.$$

The length of x is given by

$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$
.

3 x and y are said to be orthogonal if $\langle x, y \rangle = 0$.

ヘロン ヘアン ヘビン ヘビン

ъ

Inner Product

Matrices Linear Independence Systems and Eigenvalues

Example

Let
$$x = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $y = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$, then
• $||x|| = \sqrt{11}$
• $x \perp y$.

C.J. Sutton Systems of First Order ODEs, Part I

ヘロト 人間 とくほとくほとう

₹ 990

Matrices Linear Independence Systems and Eigenvalues

The Determinant: the 2×2 -case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2 × 2 matrix then the determinant is given by $det(A) = ad - bc$.

C.J. Sutton Systems of First Order ODEs, Part I

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Matrices Linear Independence Systems and Eigenvalues

The Determinant: the 3×3 -case

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 be a 3 × 3 matrix then the determinant is given by

$$det(A) = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Matrices Linear Independence Systems and Eigenvalues

The Determinant: the General Case

Let $A = (a_{ij})$ be an $n \times n$ matrix

- Let M_{ij} be the $(n-1) \times (n-1)$ matrix formed by deleting the *i*-th row and *j*-th column from *A*.
- The determinant of A is the scalar given by

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det(M_{1j}).$$

ヘロン 人間 とくほ とくほ とう

Matrices Linear Independence Systems and Eigenvalues

The Determinant: Exercises

Compute the determinant of the following matrices.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 2 & 3 \\ -2 & 7 \end{pmatrix}$$
$$\mathbf{S} \quad \mathbf{C} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

・ロト ・ 理 ト ・ ヨ ト ・

Matrices Linear Independence Systems and Eigenvalues

.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Special Matrix: The Identity

The identity matrix *I* is the $n \times n$ matrix formed by placing ones down the diagonal and zeroes in all the other entries. So we have

If *A* is a square $n \times n$ matrix then

$$AI = IA = A.$$

Matrices Linear Independence Systems and Eigenvalues

The Inverse

Let *A* be a square $n \times n$ matrix. *A* is said to be invertible or non-singular if there exists an $n \times n$ matrix *B* such that

BA = AB = I.

If such a matrix exists it is unique and we denote it by A^{-1} .

Theorem

Let A be a square $n \times n$ matrix. A is invertible if and only if $det(A) \neq 0$.

ヘロト 人間 ト ヘヨト ヘヨト

Matrices Linear Independence Systems and Eigenvalues

Computing A^{-1} via Cofactors

Let *A* be a square $n \times n$ matrix.

1 The cofactor associated to a_{ij} is

$$C_{ij} = (-1)^{i+j} \det M_{ij},$$

where M_{ij} is the $(n-1) \times (n-1)$ matrix formed by deleting the *i*-th row and *j*-th column.

If A is invertible, then

$$A^{-1}=(b_{ij}).,$$

where $b_{ij} = \frac{C_{ji}}{\det A}$.

・ロト ・ 理 ト ・ ヨ ト ・

Matrices Linear Independence Systems and Eigenvalues

Computing A^{-1} via Gaussian Elimination

Elementary Row Operations

- interchange two rows
- 2 multiply a row by a non-zero scalar
- adding any multiple of one row to another.
- Transforming A through a sequence of elem. row ops. is called Gaussian elimination or row reduction.
- A invertible, then there is a sequnce of elem. row ops. which transforms A to I and I to A^{-1} .

ヘロト 人間 ト ヘヨト ヘヨト

Matrices Linear Independence Systems and Eigenvalues

Computing A^{-1} via Gaussian Elimination

Example

Let
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
. Use Gaussian elimination to show that
$$A^{-1} = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1/3 & -1/3 \\ 1 & 0 & -1 \end{pmatrix}.$$

C.J. Sutton Systems of First Order ODEs, Part I

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Matrices Linear Independence Systems and Eigenvalues

Matrix Functions

Let $A(t) = (a_{ij}(t))$ and $B(t) = (b_{ij}(t))$ be matrix functions, then:

•
$$\frac{d}{dt}A(t) = (a'_{ij}(t))$$

• If A and B are $n \times m$ then

$$\frac{d}{dt}(A(t)+B(t))=A'(t)+B'(t).$$

• If A is $n \times r$ and B is $r \times m$, then

$$\frac{d}{dt}(A(t)B(t)) = A'(t)B(t) + A(t)B'(t).$$

イロト イポト イヨト イヨト 一臣

The Definition

Definition

k vectors $\vec{x}_1, \ldots, \vec{x}_k \in \mathbb{R}^n$ are said to be linearly dependent if we can find numbers $c_1, \ldots, c_k \in \mathbb{R}$ not all zero such that

$$c_1\vec{x}_1+\cdots+c_k\vec{x}_k=0.$$

Otherwise we say the vectors are linearly independent.

Examples

(1,0) and (0,1) are linearly independent in \mathbb{R}^2 .

(1, 0, 0), (0, 1, 0) and (1, 1, 0) are linearly dependent in \mathbb{R}^3 .

ヘロン ヘアン ヘビン ヘビン

Linear Independence

Matrices Linear Independence Systems and Eigenvalues

A Test for Linear Independence

Theorem

Let $x^{(1)} = (x_{11}, \ldots, x_{n1}), \ldots x^{(n)} = (x_{1n}, \ldots, x_{nn})$ be *n* vectors in \mathbb{R}^n , then they are linearly independent if and only if det(**X**) \neq 0, where **X** = (x_{ij}) .

Example

Are the following sets of vectors lin. indep.?

()
$$x^{(1)} = (1, 2, 3), x^{(2)} = (1, -1, 0)$$
 and $x^{(3)} = (0, -1, 1)$

2
$$x^{(1)} = (1,0,3), x^{(2)} = (0,1,1) \text{ and } x^{(3)} = (-1,3,0)$$

ヘロト ヘアト ヘビト ヘビト

Matrices Linear Independence Systems and Eigenvalues

Systems & Matrices

A system of *n* equations in *n* unknowns

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

:
 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

can be expressed as a matrix equation

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

くロト (過) (目) (日)

э

Matrices Linear Independence Systems and Eigenvalues

Systems & Matrices

Definition

The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is said to be

- homogeneous, if **b** = 0
- inhomogeneous if $\mathbf{b} \neq \mathbf{0}$

Theorem

Let **A** be an $n \times n$ matrix and $b \in \mathbb{R}^n$ a vector. Then

- Ax = b has a unique solution if and only if det(A) \neq 0. In which case the solution is $x = A^{-1}b$.
- if $det(\mathbf{A}) = 0$, then $\mathbf{A}x = b$ has no solutions or it has infinitely many solutions.

ヘロト 人間 ト ヘヨト ヘヨト

Matrices Linear Independence Systems and Eigenvalues

Systems & Matrices

Let $\mathbf{A} = (a_{ij})$ be an $n \times n$ matrix

- Then we can think of **A** as a (linear) map $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^n$.
- To solve the equation Ax = b means to find (all) $x \in \mathbb{R}^n$ such that $Ax = b \in \mathbb{R}^n$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

Consider the matrix
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

• A scales the vector $\zeta_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ by a factor of 2
• (Actually, A scales any non-zero vector of the form $c \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ by a factor of 2.)

• A scales the vector
$$\zeta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 by a factor of $\frac{1}{2}$

• (Actually, **A** scales any non-zero vector of the form
$$c \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 by a factor of $\frac{1}{2}$.)

ヘロン 人間 とくほとく ほとう

₹ 990

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

(

Consider the matrix
$$\mathbf{B} = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$$

• **B** scales the vector $\zeta_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ by a factor of -3.
• (Actually, **B** scales any non-zero vector of the form
 $a \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ by a factor of -2.

$$c \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 by a factor of -3.)

• **B** fixes the vector
$$\zeta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
.

• (Actually, **B** fixes any non-zero vector of the form $c \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is fixed by **B**.)

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

Consider the matrix
$$\mathbf{C} = \begin{pmatrix} 5 & 0 \\ -7 & 5 \end{pmatrix}$$

• \mathbf{C} scales the vector $\zeta_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ by a factor of 5.

- (Actually, **C** scales any non-zero vector of the form $c \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ by a factor of 5.)
- C does not scale in any other directions.

ヘロト 人間 ト ヘヨト ヘヨト

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

Consider the matrix
$$\mathbf{D} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

• \mathbf{D} scales the vector $\zeta_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ by a factor of 3.
• (Actually, \mathbf{D} scales any non-zero vector of the form

 $c \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ by a factor of 3.)

• **D** scales the vector
$$\zeta_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 by a factor of -1 .

- (Actually, **D** scales any non-zero vector of the form $c \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ by a factor of -1.)
- How did we know this?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

• Given a matrix **A** it would be nice to find the non-zero vectors **x** such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

• Equivalently, we want $\lambda \in \mathbb{C}$ and $\mathbf{x} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}. \tag{2.1}$$

イロン 不良 とくほう 不良 とうほ

- There is a non-zero solution x to Eq 2.1 if and only if det(A λI) = 0.
- So, the first order of business is to find those values of λ such that

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}.$$

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

Definition

Given an $n \times n$ matrix **A** its characteristic polynomial is the polynomial of degree *n* given by

 $\Delta(t) = \det(A - tI).$

A root λ of $\Delta(t)$ is called an eigenvalue of the matrix A and a corresponding *non-zero* vector **x** such that

$$\mathbf{A}\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

is an eigenvector corresponding to λ .

ヘロア 人間 アメヨア 人口 ア

Matrices Linear Independence Systems and Eigenvalues

Eigenvectors & Eigenvalues

For a 2 × 2-matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ its characteristic polynomial is the degree 2 polynomial given by

$$\Delta(t) = \det \begin{pmatrix} a-t & b \\ c & d-t \end{pmatrix}$$
$$= t^2 - (a+b)t + (ad-bc)$$
$$= t^2 - \operatorname{Tr}(\mathbf{A})t + \det \mathbf{A}$$

・ロト ・ 理 ト ・ ヨ ト ・

Multiplicities

Matrices Linear Independence Systems and Eigenvalues

Definition

Let λ be an eigenvalue of an $n \times n$ matrix A. Then

- the algebraic multiplicity of λ , denoted $\text{mult}_{\text{alg}}(\lambda)$, is the number of times λ appears as a root of $\Delta(t)$.
- 2 the geometric multiplicity of λ , denoted mult_{geom}(λ), is the maximal number of linearly independent eigenvectors associated to λ .

We note that $\operatorname{mult}_{\operatorname{geom}}(\lambda) \leq \operatorname{mult}_{\operatorname{alg}}(\lambda) \leq n$.

・ロット (雪) () () () ()

Example I

Matrices Linear Independence Systems and Eigenvalues

Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{cc} 5 & -1 \\ 3 & 1 \end{array}\right)$$

• The characteristic polynomial of A is:

$$\Delta(\lambda) = \lambda^2 - 6\lambda + 8$$

- So the eigenvalues of **A** are $\lambda_1 = 2$ and $\lambda_2 = 4$.
- We now want to find the corresponding eigenvectors...

ヘロト ヘ戸ト ヘヨト ヘヨト

Matrices Linear Independence Systems and Eigenvalues

Example I (cont'd)

Case I:
$$\lambda_1 = 2$$

• $\zeta = \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} \neq \mathbf{0}$ is an eigenvector corresponding to λ_1 if and only if

$$(\mathbf{A} - \lambda_1 I_2)\zeta = \mathbf{0}.$$

This is equivalent to the system of equations

$$\begin{array}{rcl} 3\zeta_1 - \zeta_2 & = & 0 \\ 3\zeta_1 - \zeta_2 & = & 0 \end{array}$$

• Hence, the eigenvectors are of the form

$$\zeta = c \left(\begin{array}{c} 1\\ 3 \end{array}\right)$$

for $c \neq 0$.

く 同 と く ヨ と く ヨ と

э

Matrices Linear Independence Systems and Eigenvalues

Example I (cont'd)

Case II:
$$\lambda_2 = 4$$

• $\zeta = \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} \neq \mathbf{0}$ is an eigenvector corresponding to λ_2 if and only if

$$(\mathbf{A} - \lambda_2 I_2)\zeta = \mathbf{0}.$$

This is equivalent to the system of equations

$$\begin{aligned} \zeta_1 - \zeta_2 &= 0\\ 3\zeta_1 - 3\zeta_2 &= 0 \end{aligned}$$

• Hence, the eigenvectors are of the form

$$\zeta = c \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

for $c \neq 0$.

く 同 と く ヨ と く ヨ と

э

Example II

Matrices Linear Independence Systems and Eigenvalues

Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrrr} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array}\right)$$

• The characteristic polynomial of A is:

$$\Delta(\lambda) = -\lambda^3 + 6\lambda^2 + 15\lambda + 8$$

- The eigenvalues of **A** are $\lambda_1 = \lambda_2 = -1$ and $\lambda_3 = 8$.
- We now want to find the corresponding eigenvectors...

ヘロン 人間 とくほ とくほ とう

Matrices Linear Independence Systems and Eigenvalues

Example II (cont'd)

Case I:
$$\lambda_1 = \lambda_2 = -1$$

• $\zeta = \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} \neq \mathbf{0}$ is an eigenvector corresponding to $\lambda_1 = \lambda_2$ if and only if

$$(\mathbf{A} - \lambda_1 I_2)\zeta = \mathbf{0}.$$

This is equivalent to the system of equations

$$\begin{array}{rcl} 4\zeta_1 + 2\zeta_2 + 4\zeta_3 & = & 0 \\ 2\zeta_1 + \zeta_2 + 2\zeta_3 & = & 0 \\ 4\zeta_1 + 2\zeta_2 + 4\zeta_3 & = & 0 \end{array}$$

ヘロン ヘアン ヘビン ヘビン

Matrices Linear Independence Systems and Eigenvalues

Example II (cont'd)

Case I:
$$\lambda_1 = \lambda_2 = -1$$

• Hence, the eigenvectors corresponding to $\lambda_1 = \lambda_2 = -1$ are of the form

$$\zeta = c_1 \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

for c_1 , c_2 not both zero.

 So, the eigenspace corresponding to the eigenvalue -1 is two-dimensional.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Matrices Linear Independence Systems and Eigenvalues

Example II (cont'd)

(

Case II:
$$\lambda_3 = 8$$

• $\zeta = \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} \neq \mathbf{0}$ is an eigenvector corresponding to $\lambda_1 = \lambda_2$ if and only if

$$(\mathbf{A} - \lambda_3 I_2)\zeta = \mathbf{0}.$$

This is equivalent to the system of equations

$$\begin{array}{rcl} -5\zeta_1 + 2\zeta_2 + 4\zeta_3 &=& 0\\ 2\zeta_1 - 8\zeta_2 + 2\zeta_3 &=& 0\\ 4\zeta_1 + 2\zeta_2 - 5\zeta_3 &=& 0 \end{array}$$

ヘロン ヘアン ヘビン ヘビン

Matrices Linear Independence Systems and Eigenvalues

Example II (cont'd)

Case II: $\lambda_3 = 8$

• Hence, the eigenvectors corresponding to $\lambda_3 = 8$ are of the form

$$\zeta = c \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

for $c \neq 0$.

• So, the eigenspace corresponding to the eigenvalue 8 is one-dimensional.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Matrices Linear Independence Systems and Eigenvalues

Find the eigenvalues and eigenvectors of the following matrices

a =
$$\begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$$

b = $\begin{pmatrix} \frac{7}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$
c = $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Exercises

・ロト ・ 理 ト ・ ヨ ト ・

Outline

Introduction

- Definitions and Existence & Uniqueness Theorems
- Example

2 Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

Systems of 1st Order Linear ODEs: Theory

(4回) (日) (日)

Examples

A general system of first-order linear ODEs is of the form

$$x'(t) = \mathbf{P}(t)x(t) + g(t),$$

where $x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, g(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_n(t) \end{pmatrix}$ and
$$\mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) & \cdots & p_{1n}(t) \\ p_{21}(t) & p_{22}(t) & \cdots & p_{2n}(t) \\ \vdots & \vdots & 0 & \vdots \\ p_{n1}(t) & p_{n2}(t) & \cdots & p_{nn}(t) \end{pmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Principle of Superposition

Proposition

Let $x^{(1)}(t), \ldots, x^{(n)}(t)$ be vector functions which solve

 $x' = \mathbf{P}(t)x.$

Then for any $c_1, \ldots, c_n \in \mathbb{R}$ we see that

$$x(t) = c_1 x^{(1)}(t) + \cdots + c_n x^{(n)}(t)$$

also solves the equation.

イロン 不得 とくほ とくほ とうほ

The Wronskian

Let $x^{(1)}(t), \ldots, x^{(n)}(t)$ be vector functions, then the Wronskian is defined by

$$W[x^{(1)},\ldots,x^{(n)}](t)=\det \mathbf{X}(t),$$

where

$$\mathbf{X}(t) = \begin{pmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{pmatrix}$$

イロン 不良 とくほう 不良 とうしょう

The Wronskian

Proposition

The vector functions $x^{(1)}(t), \ldots, x^{(n)}(t)$ are linearly independent at t_0 if and only if

$$W[x^{(1)},\ldots,x^{(n)}](t_0)\neq 0.$$

C.J. Sutton Systems of First Order ODEs, Part I

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The Wronskian

Proposition

Suppose $x^{(1)}(t), \ldots, x^{(n)}(t)$ are solutions to

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \ \alpha < t < \beta \tag{3.1}$$

such that $W[x^{(1)}, ..., x^{(n)}](t) \neq 0$ for all $\alpha < t < \beta$. Then for each $x = \phi(t)$ solving Eq. 3.1 there exist unique constants $c_1, ..., c_n \in \mathbb{R}$ such that

$$\phi(t) = c_1 x^{(1)}(t) + \cdots + c_n x^{(n)}(t).$$

In this case we call $\{x^{(1)}(t), \ldots, x^{(n)}(t)\}$ a fundamental set of solutions.

ヘロン 人間 とくほ とくほ とう

The Wronskian

Proposition

If $x^{(1)}(t), \ldots, x^{(n)}(t)$ are solutions to

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \ \alpha < t < \beta,$$

then on this interval $W[x^{(1)}, ..., x^{(n)}](t)$ is either identically zero or never vanishes on $\alpha < t < \beta$.

Corollary

A homogeneous linear system of the form

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \ \alpha < t < \beta,$$

always has a fundamental set of solutions.