Systems of First Order ODEs, Part I

Craig J. Sutton
craig.j.sutton@dartmouth.edu
Department of Mathematics
Dartmouth College

Math 23 Differential Equations Winter 2013

Outline

(9) Introduction

- Definitions and Existence \& Uniqueness Theorems
- Example
(2) Linear Algebra
- Matrices
- Linear Independence
- Systems and Eigenvalues
(3) Systems of 1st Order Linear ODEs: Theory

Outline

(9) Introduction

- Definitions and Existence \& Uniqueness Theorems
- Example

2 Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

3 Systems of 1 st Order Linear ODEs: Theory

The Definition

Definition

A system of first order ODEs is a system of equations of the form

$$
\begin{aligned}
x_{1}^{\prime} & =F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots \\
x_{n}^{\prime} & =F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

where x_{1}, \ldots, x_{n} are functions of the independent variable t. A solution of the system on the iterval $\alpha<t<\beta$ is a set of n functions

$$
x_{1}=\phi_{1}(t), \ldots, x_{n}=\phi_{n}(t)
$$

that are differentiable on $\alpha<t<\beta$ and that satisfy the system for all $\alpha<t<\beta$.

Example

- Consider the system

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-x(t)
\end{aligned}
$$

- A solution is given by

$$
(x(t), y(t))=(\sin (t), \cos (t))
$$

Example

- Consider the system

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+\sqrt{2} y(t) \\
y^{\prime}(t) & =\sqrt{2} x(t)-2 y(t)
\end{aligned}
$$

- Every solution to this system is of the form

$$
\Phi(t)=c_{1}\left(e^{-t}, \sqrt{2} e^{-t}\right)+c_{2}\left(-\sqrt{2} e^{-4 t}, e^{-4 t}\right)
$$

- Note: Solving systems like the one above will lead us to consider eigenvalues and eigenvectors.

Existence \& Uniqueness

Theorem

In Eq. 1.1 suppose the functions F_{1}, \ldots, F_{n} and
$\partial F_{1} / \partial x_{1}, \ldots, \partial F_{1} / \partial x_{n}, \ldots, \partial F_{n} / \partial x_{1}, \ldots, \partial F_{n} / \partial x_{n}$ are continuous in an open region R of the $t x_{1} x_{2} \cdots x_{n}$-space and let $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right) \in \mathbb{R}^{n+1}$. Then there is an interval $\left|t-t_{0}\right|<h$ in which there exists a unique solution $x_{1}=\phi_{1}(t), \ldots, x_{n}=\phi_{n}(t)$ of the system Eq. 1.1 such that

$$
\left(\phi_{1}\left(t_{0}\right), \ldots, \phi_{n}\left(t_{0}\right)\right)=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)
$$

Linear System

Definition

The system Eq. 1.1 is said to be linear if the functions
$F_{1}\left(t, x_{1}, \ldots, x_{n}\right), \ldots, F_{n}\left(t, x_{1}, \ldots, x_{n}\right)$ are linear in the variables x_{1}, \ldots, x_{n}. In which the system has the form

$$
\begin{aligned}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\cdots p_{1 n}(t) x_{n}+g_{1}(t) \\
& \vdots \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\cdots p_{n n}(t) x_{n}+g_{n}(t)
\end{aligned}
$$

We'll say it is homogeneous in the case $g_{1}=\cdots g_{n}=0$. Otherwise it is said to be non-homogeneous.

Existence \& Uniqueness

Theorem

If the functions $p_{i j}(t)(1 \leq i, j \leq n)$ and g_{1}, \ldots, g_{n} in Eq. 1.2 are continuous on an open interval I : $\alpha<t<\beta$, then there exists a unique solution $x_{1}=\phi_{1}(t), \ldots, x_{n}=\phi_{n}(t)$ of the system Eq. 1.2 defined on all of I such that

$$
\left(\phi_{1}\left(t_{0}\right), \ldots, \phi_{n}\left(t_{0}\right)\right)=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)
$$

Spring-Mass System

Consider

(1) Two blocks of mass m_{1} and m_{2}.
(2) Three springs with spring constants k_{1}, k_{2} and k_{3}.
(3) Assume an eternal force of $F_{1}(t)$ and $F_{2}(t)$ acting on the masses.
We get (using arguments similar to those used for the hanging block):

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2}+F_{1}(t) \\
& m_{2} x_{2}^{\prime \prime}=k_{2} x_{1}-\left(k_{2}+k_{3}\right) x_{2}+F_{2}(t)
\end{aligned}
$$

Spring-Mass System

4 Now make the substitution

$$
y_{1}=x_{1}, y_{2}=x_{2}, y_{3}=x_{1}^{\prime} y_{4}=x_{2}^{\prime}
$$

(5) Then we get the following system of First-Order ODEs

$$
\begin{aligned}
y_{1}^{\prime} & =y_{3} \\
y_{2}^{\prime} & =y_{4} \\
y_{3}^{\prime} & =\frac{1}{m_{1}}\left(-\left(k_{1}+k_{2}\right) y_{1}+k_{2} y_{2}+F_{1}(t)\right) \\
y_{4}^{\prime} & =\frac{1}{m_{2}}\left(k_{2} y_{1}-\left(k_{2}+k_{3}\right) y_{2}+F_{2}(t)\right)
\end{aligned}
$$

2nd Order Linear ODE to System of 1st Order ODEs

- Consider the 2nd Order ODE

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=g(t)
$$

- Let $x_{1}=u$ and $x_{2}=u^{\prime}$.
- Then our ODE is equivalent to

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{2}(t) \\
& x_{2}^{\prime}(t)=-q(t) x_{1}(t)-p(t) x_{2}(t)+g(t)
\end{aligned}
$$

- Moral: Second-order linear ODEs are really just systems of First-Order linear ODEs.

Outline

(9) Introduction
 - Definitions and Existence \& Uniqueness Theorems
 - Example

(2) Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues

3 Systems of 1 st Order Linear ODEs: Theory

$m \times n$ Matrices

An $m \times n$-matrix Ais a rectangular array of complex numbers of the form

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

- The matrix is said to be square if $m=n$.
- A (column) vector is an $m \times 1$ matrix.

Matrix Operations

Definition

Let $A=\left(a_{i j}\right)$ be an $m \times n$-matrix A
(1) The transpose of A, denoted A^{T}, is the $n \times m$ matrix obtained by interchanging the rows and columns of A. Thus $A^{t}=\left(a_{j i}\right)$.
(2) The conjugate of A, denoted \bar{A} is the $m \times n$ matrix obtained by replacing $a_{i j}$ by its conjugate $\bar{a}_{i j}$. So, $\bar{A}=\left(\bar{a}_{i j}\right)$.
(3) The adjoint of A is given by $A^{*}=\bar{A}^{t}$.

New Matrices from Old

Let $A=\left(\begin{array}{ccc}1+2 i & 3 & 5-i \\ 0 & 2-9 i & -4\end{array}\right)$, then
(1) $A^{t}=\left(\begin{array}{cc}1+2 i & 0 \\ 3 & 2-9 i \\ 5-i & 0\end{array}\right)$
(2) $\bar{A}=\left(\begin{array}{ccc}1-2 i & 3 & 5+i \\ 0 & 2+9 i & -4\end{array}\right)$
(3) $A^{*}=\left(\begin{array}{cc}1-2 i & 0 \\ 3 & 2+9 i \\ 5+i & -4\end{array}\right)$.

Matrix Addition \& Multiplication

(1) Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$-matrices, then $A+B=\left(a_{i j}+b_{i j}\right)$.
(2) $\alpha \in \mathbb{C}$, then $\alpha A=\left(\alpha a_{i j}\right)$
(3) If $A=\left(a_{i j}\right)$ is $m \times n$ and $B=\left(b_{i j}\right)$ is $n \times r$, then $A B$ is the $m \times r$ matrix $A B=\left(c_{i j}\right)$ where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Inner Product

Let $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{C}^{n}$, be two vectors.
(1) their inner product is the (complex) number

$$
<x, y>=x^{t} \bar{y}=\sum_{1}^{n} x_{i} \bar{y}_{i}
$$

(2) The length of x is given by

$$
\|x\|=<x, x>^{\frac{1}{2}} .
$$

(3) x and y are said to be orthogonal if $\langle x, y\rangle=0$.

Inner Product

Example

$$
\begin{aligned}
& \text { Let } x=\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right) \text { and } y=\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right) \text {, then } \\
& \text { - }\|x\|=\sqrt{11} \\
& \text { - } x \perp y .
\end{aligned}
$$

The Determinant: the 2×2-case

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix then the determinant is given by

$$
\operatorname{det}(A)=a d-b c
$$

The Determinant: the 3×3-case

Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be a 3×3 matrix then the determinant is given by

$$
\begin{aligned}
\operatorname{det}(A)= & a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
\end{aligned}
$$

The Determinant: the General Case

Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix
(1) Let $M_{i j}$ be the $(n-1) \times(n-1)$ matrix formed by deleting the i-th row and j-th column from A.
(2) The determinant of A is the scalar given by

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{j+1} a_{1 j} \operatorname{det}\left(M_{1 j}\right)
$$

The Determinant: Exercises

Compute the determinant of the following matrices.
(1) $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & -1 & 2 \\ 1 & 0 & 1\end{array}\right)$
(2) $\mathbf{B}=\left(\begin{array}{cc}2 & 3 \\ -2 & 7\end{array}\right)$
(3) $\mathbf{C}=\left(\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right)$

Special Matrix: The Identity

The identity matrix I is the $n \times n$ matrix formed by placing ones down the diagonal and zeroes in all the other entries. So we have

$$
I=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

If A is a square $n \times n$ matrix then

$$
A I=I A=A
$$

The Inverse

Let A be a square $n \times n$ matrix. A is said to be invertible or non-singular if there exists an $n \times n$ matrix B such that

$$
B A=A B=I
$$

If such a matrix exists it is unique and we denote it by A^{-1}.

Theorem

Let A be a square $n \times n$ matrix. A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Computing A^{-1} via Cofactors

Let A be a square $n \times n$ matrix.
(1) The cofactor associated to $a_{i j}$ is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} M_{i j},
$$

where $M_{i j}$ is the $(n-1) \times(n-1)$ matrix formed by deleting the i-th row and j-th column.
(2) If A is invertible, then

$$
A^{-1}=\left(b_{i j}\right)
$$

where $b_{i j}=\frac{C_{j i}}{\operatorname{det} A}$.

Computing A^{-1} via Gaussian Elimination

- Elementary Row Operations
(1) interchange two rows
(2) multiply a row by a non-zero scalar
(3) adding any multiple of one row to another.
- Transforming A through a sequence of elem. row ops. is called Gaussian elimination or row reduction.
- A invertible, then there is a sequnce of elem. row ops. which transforms A to I and I to A^{-1}.

Computing A^{-1} via Gaussian Elimination

Example

Let $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 1 & 3 & 1 \\ 1 & 0 & 1\end{array}\right)$. Use Gaussian elimination to show that

$$
A^{-1}=\left(\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 / 3 & -1 / 3 \\
1 & 0 & -1
\end{array}\right) .
$$

Matrix Functions

Let $A(t)=\left(a_{i j}(t)\right)$ and $B(t)=\left(b_{i j}(t)\right)$ be matrix functions, then:

- $\frac{d}{d t} A(t)=\left(a_{i j}^{\prime}(t)\right)$
- If A and B are $n \times m$ then

$$
\frac{d}{d t}(A(t)+B(t))=A^{\prime}(t)+B^{\prime}(t)
$$

- If A is $n \times r$ and B is $r \times m$, then

$$
\frac{d}{d t}(A(t) B(t))=A^{\prime}(t) B(t)+A(t) B^{\prime}(t)
$$

The Definition

Definition

k vectors $\vec{x}_{1}, \ldots, \vec{x}_{k} \in \mathbb{R}^{n}$ are said to be linearly dependent if we can find numbers $c_{1}, \ldots, c_{k} \in \mathbb{R}$ not all zero such that

$$
c_{1} \vec{x}_{1}+\cdots+c_{k} \vec{x}_{k}=0
$$

Otherwise we say the vectors are linearly independent.

Examples

(1) $(1,0)$ and $(0,1)$ are linearly independent in \mathbb{R}^{2}.
(2) $(1,0,0),(0,1,0)$ and $(1,1,0)$ are linearly dependent in \mathbb{R}^{3}.

A Test for Linear Independence

Theorem

Let $x^{(1)}=\left(x_{11}, \ldots, x_{n 1}\right), \ldots x^{(n)}=\left(x_{1 n}, \ldots, x_{n n}\right)$ be n vectors in \mathbb{R}^{n}, then they are linearly independent if and only if $\operatorname{det}(\mathbf{X}) \neq 0$, where $\mathbf{X}=\left(x_{i j}\right)$.

Example

Are the following sets of vectors lin. indep.?
(1) $x^{(1)}=(1,2,3), x^{(2)}=(1,-1,0)$ and $x^{(3)}=(0,-1,1)$
(2) $x^{(1)}=(1,0,3), x^{(2)}=(0,1,1)$ and $x^{(3)}=(-1,3,0)$

Systems \& Matrices

A system of n equations in n unknowns

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

can be expressed as a matrix equation

$$
\mathbf{A x}=\mathbf{b}
$$

Systems \& Matrices

Definition

The equation $\mathbf{A x}=\mathbf{b}$ is said to be

- homogeneous, if $\mathbf{b}=\mathbf{0}$
- inhomogeneous if $\mathbf{b} \neq \mathbf{0}$

Theorem

Let \mathbf{A} be an $n \times n$ matrix and $b \in \mathbb{R}^{n}$ a vector. Then
(1) $\mathbf{A} x=b$ has a unique solution if and only if $\operatorname{det}(\mathbf{A}) \neq 0$. In which case the solution is $x=\mathbf{A}^{-1} b$.
(2) if $\operatorname{det}(\mathbf{A})=0$, then $\mathbf{A} x=b$ has no solutions or it has infinitely many solutions.

Systems \& Matrices

Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix

- Then we can think of \mathbf{A} as a (linear) map $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- To solve the equation $\mathbf{A} x=b$ means to find (all) $x \in \mathbb{R}^{n}$ such that $\mathbf{A} x=b \in \mathbb{R}^{n}$.

Eigenvectors \& Eigenvalues

Consider the matrix $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$

- A scales the vector $\zeta_{1}=\binom{1}{0}$ by a factor of 2
- (Actually, A scales any non-zero vector of the form $c\binom{1}{0}$ by a factor of 2.)
- A scales the vector $\zeta_{2}=\binom{0}{1}$ by a factor of $\frac{1}{2}$
- (Actually, A scales any non-zero vector of the form $c\binom{0}{1}$ by a factor of $\frac{1}{2}$.)

Eigenvectors \& Eigenvalues

Consider the matrix $\mathbf{B}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$

- B scales the vector $\zeta_{1}=\binom{1}{0}$ by a factor of -3 .
- (Actually, B scales any non-zero vector of the form $c\binom{1}{0}$ by a factor of -3 .)
- B fixes the vector $\zeta_{2}=\binom{0}{1}$.
- (Actually, B fixes any non-zero vector of the form $c\binom{0}{1}$ is fixed by \mathbf{B}.)

Eigenvectors \& Eigenvalues

Consider the matrix $\mathbf{C}=\left(\begin{array}{cc}5 & 0 \\ -7 & 5\end{array}\right)$

- C scales the vector $\zeta_{1}=\binom{0}{1}$ by a factor of 5 .
- (Actually, C scales any non-zero vector of the form $c\binom{0}{1}$ by a factor of 5 .)
- C does not scale in any other directions.

Eigenvectors \& Eigenvalues

Consider the matrix $\mathbf{D}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$

- D scales the vector $\zeta_{1}=\binom{1}{1}$ by a factor of 3 .
- (Actually, D scales any non-zero vector of the form $c\binom{1}{1}$ by a factor of 3 .)
- D scales the vector $\zeta_{2}=\binom{1}{-1}$ by a factor of -1 .
- (Actually, D scales any non-zero vector of the form $c\binom{1}{-1}$ by a factor of -1 .)
- How did we know this?

Eigenvectors \& Eigenvalues

- Given a matrix \mathbf{A} it would be nice to find the non-zero vectors \mathbf{x} such that

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- Equivalently, we want $\lambda \in \mathbb{C}$ and $\mathbf{x} \neq 0$ such that

$$
\begin{equation*}
\mathbf{A x}-\lambda \mathbf{x}=\mathbf{0} \tag{2.1}
\end{equation*}
$$

- There is a non-zero solution \mathbf{x} to Eq 2.1 if and only if $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.
- So, the first order of business is to find those values of λ such that

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

Eigenvectors \& Eigenvalues

Definition

Given an $n \times n$ matrix \mathbf{A} its characteristic polynomial is the polynomial of degree n given by

$$
\Delta(t)=\operatorname{det}(A-t /)
$$

A root λ of $\Delta(t)$ is called an eigenvalue of the matrix A and a corresponding non-zero vector \mathbf{X} such that

$$
\mathbf{A} \mathbf{x}-\lambda \mathbf{x}=\mathbf{0}
$$

is an eigenvector corresponding to λ.

Eigenvectors \& Eigenvalues

For a 2×2-matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ its characteristic polynomial is the degree 2 polynomial given by

$$
\begin{aligned}
\Delta(t) & =\operatorname{det}\left(\begin{array}{cc}
a-t & b \\
c & d-t
\end{array}\right) \\
& =t^{2}-(a+b) t+(a d-b c) \\
& =t^{2}-\operatorname{Tr}(\mathbf{A}) t+\operatorname{det} \mathbf{A}
\end{aligned}
$$

Multiplicities

Definition

Let λ be an eigenvalue of an $n \times n$ matrix A. Then
(1) the algebraic multiplicity of λ, denoted mult ${ }_{\text {alg }}(\lambda)$, is the number of times λ appears as a root of $\Delta(t)$.
(2) the geometric multiplicity of λ, denoted mult geom (λ), is the maximal number of linearly independent eigenvectors associated to λ.
We note that mult geom $(\lambda) \leq$ mult $_{\text {alg }}(\lambda) \leq n$.

Example I

Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right)
$$

- The characteristic polynomial of \mathbf{A} is:

$$
\Delta(\lambda)=\lambda^{2}-6 \lambda+8
$$

- So the eigenvalues of \mathbf{A} are $\lambda_{1}=2$ and $\lambda_{2}=4$.
- We now want to find the corresponding eigenvectors...

Example I (cont'd)

Case I: $\lambda_{1}=2$

- $\zeta=\binom{\zeta_{1}}{\zeta_{2}} \neq \mathbf{0}$ is an eigenvector corresponding to λ_{1} if and only if

$$
\left(\mathbf{A}-\lambda_{1} l_{2}\right) \zeta=\mathbf{0}
$$

- This is equivalent to the system of equations

$$
\begin{aligned}
& 3 \zeta_{1}-\zeta_{2}=0 \\
& 3 \zeta_{1}-\zeta_{2}=0
\end{aligned}
$$

- Hence, the eigenvectors are of the form

$$
\zeta=c\binom{1}{3}
$$

for $c \neq 0$.

Example I (cont'd)

Case II: $\lambda_{2}=4$

- $\zeta=\binom{\zeta_{1}}{\zeta_{2}} \neq \mathbf{0}$ is an eigenvector corresponding to λ_{2} if and only if

$$
\left(\mathbf{A}-\lambda_{2} I_{2}\right) \zeta=\mathbf{0}
$$

- This is equivalent to the system of equations

$$
\begin{array}{r}
\zeta_{1}-\zeta_{2}=0 \\
3 \zeta_{1}-3 \zeta_{2}=0
\end{array}
$$

- Hence, the eigenvectors are of the form

$$
\zeta=c\binom{1}{1}
$$

for $c \neq 0$.

Example II

Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

- The characteristic polynomial of \mathbf{A} is:

$$
\Delta(\lambda)=-\lambda^{3}+6 \lambda^{2}+15 \lambda+8
$$

- The eigenvalues of \mathbf{A} are $\lambda_{1}=\lambda_{2}=-1$ and $\lambda_{3}=8$.
- We now want to find the corresponding eigenvectors...

Example II (cont'd)

Case I: $\lambda_{1}=\lambda_{2}=-1$

- $\zeta=\left(\begin{array}{l}\zeta_{1} \\ \zeta_{2} \\ \zeta_{3}\end{array}\right) \neq \mathbf{0}$ is an eigenvector corresponding to
$\lambda_{1}=\lambda_{2}$ if and only if

$$
\left(\mathbf{A}-\lambda_{1} I_{2}\right) \zeta=\mathbf{0}
$$

- This is equivalent to the system of equations

$$
\begin{array}{r}
4 \zeta_{1}+2 \zeta_{2}+4 \zeta_{3}=0 \\
2 \zeta_{1}+\zeta_{2}+2 \zeta_{3}=0 \\
4 \zeta_{1}+2 \zeta_{2}+4 \zeta_{3}=0
\end{array}
$$

Example II (cont'd)

Case I: $\lambda_{1}=\lambda_{2}=-1$

- Hence, the eigenvectors corresponding to $\lambda_{1}=\lambda_{2}=-1$ are of the form

$$
\zeta=c_{1}\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)
$$

for c_{1}, c_{2} not both zero.

- So, the eigenspace corresponding to the eigenvalue -1 is two-dimensional.

Example II (cont'd)

Case II: $\lambda_{3}=8$

- $\zeta=\left(\begin{array}{l}\zeta_{1} \\ \zeta_{2} \\ \zeta_{3}\end{array}\right) \neq \mathbf{0}$ is an eigenvector corresponding to
$\lambda_{1}=\lambda_{2}$ if and only if

$$
\left(\mathbf{A}-\lambda_{3} I_{2}\right) \zeta=\mathbf{0}
$$

- This is equivalent to the system of equations

$$
\begin{aligned}
-5 \zeta_{1}+2 \zeta_{2}+4 \zeta_{3} & =0 \\
2 \zeta_{1}-8 \zeta_{2}+2 \zeta_{3} & =0 \\
4 \zeta_{1}+2 \zeta_{2}-5 \zeta_{3} & =0
\end{aligned}
$$

Example II (cont'd)

Case II: $\lambda_{3}=8$

- Hence, the eigenvectors corresponding to $\lambda_{3}=8$ are of the form

$$
\zeta=c\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

for $c \neq 0$.

- So, the eigenspace corresponding to the eigenvalue 8 is one-dimensional.

Exercises

Find the eigenvalues and eigenvectors of the following matrices
(1) $\mathbf{A}=\left(\begin{array}{cc}-1 & 2 \\ 3 & 0\end{array}\right)$
(2) $\mathbf{B}=\left(\begin{array}{cc}\frac{7}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2}\end{array}\right)$
(3) $\mathbf{C}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$

Outline

(1) Introduction
 - Definitions and Existence \& Uniqueness Theorems
 - Example

(2) Linear Algebra

- Matrices
- Linear Independence
- Systems and Eigenvalues
(3) Systems of 1st Order Linear ODEs: Theory

Examples

A general system of first-order linear ODEs is of the form

$$
\begin{gathered}
x^{\prime}(t)=\mathbf{P}(t) x(t)+g(t), \\
\text { where } x(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), g(t)=\left(\begin{array}{c}
g_{1}(t) \\
g_{2}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right) \text { and } \\
\mathbf{P}(t)=\left(\begin{array}{cccc}
p_{11}(t) & p_{12}(t) & \cdots & p_{1 n}(t) \\
p_{21}(t) & p_{22}(t) & \cdots & p_{2 n}(t) \\
\vdots & \vdots & 0 & \vdots \\
p_{n 1}(t) & p_{n 2}(t) & \cdots & p_{n n}(t)
\end{array}\right) .
\end{gathered}
$$

Principle of Superposition

Proposition

Let $x^{(1)}(t), \ldots, x^{(n)}(t)$ be vector functions which solve

$$
x^{\prime}=\mathbf{P}(t) x
$$

Then for any $c_{1}, \ldots, c_{n} \in \mathbb{R}$ we see that

$$
x(t)=c_{1} x^{(1)}(t)+\cdots+c_{n} x^{(n)}(t)
$$

also solves the equation.

The Wronskian

Let $x^{(1)}(t), \ldots, x^{(n)}(t)$ be vector functions, then the Wronskian is defined by

$$
W\left[x^{(1)}, \ldots, x^{(n)}\right](t)=\operatorname{det} \mathbf{X}(t),
$$

where

$$
\mathbf{X}(t)=\left(\begin{array}{cccc}
x_{11}(t) & x_{12}(t) & \cdots & x_{1 n}(t) \\
x_{21}(t) & x_{22}(t) & \cdots & x_{2 n}(t) \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 1}(t) & x_{n 2}(t) & \cdots & x_{n n}(t)
\end{array}\right)
$$

The Wronskian

Proposition

The vector functions $x^{(1)}(t), \ldots, x^{(n)}(t)$ are linearly independent at t_{0} if and only if

$$
W\left[x^{(1)}, \ldots, x^{(n)}\right]\left(t_{0}\right) \neq 0
$$

The Wronskian

Proposition

Suppose $x^{(1)}(t), \ldots, x^{(n)}(t)$ are solutions to

$$
\begin{equation*}
x^{\prime}=\mathbf{P}(t) x, \alpha<t<\beta \tag{3.1}
\end{equation*}
$$

such that $W\left[x^{(1)}, \ldots, x^{(n)}\right](t) \neq 0$ for all $\alpha<t<\beta$. Then for each $x=\phi(t)$ solving Eq. 3.1 there exist unique constants $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
\phi(t)=c_{1} x^{(1)}(t)+\cdots+c_{n} x^{(n)}(t) .
$$

In this case we call $\left\{x^{(1)}(t), \ldots, x^{(n)}(t)\right\}$ a fundamental set of solutions.

The Wronskian

Proposition

If $x^{(1)}(t), \ldots, x^{(n)}(t)$ are solutions to

$$
x^{\prime}=\mathbf{P}(t) x, \alpha<t<\beta
$$

then on this interval $W\left[x^{(1)}, \ldots, x^{(n)}\right](t)$ is either identically zero or never vanishes on $\alpha<t<\beta$.

Corollary

A homogeneous linear system of the form

$$
x^{\prime}=\mathbf{P}(t) x, \alpha<t<\beta
$$

always has a fundamental set of solutions.

