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The Definition

Definition
A system of first order ODEs is a system of equations of the form

x ′1 = F1(t , x1, x2, . . . , xn)

... (1.1)
x ′n = Fn(t , x1, x2, . . . , xn)

where x1, . . . , xn are functions of the independent variable t . A
solution of the system on the iterval α < t < β is a set of n functions

x1 = φ1(t), . . . , xn = φn(t)

that are differentiable on α < t < β and that satisfy the system for all
α < t < β.
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Example

Consider the system

x ′(t) = y(t)
y ′(t) = −x(t)

A solution is given by

(x(t), y(t)) = (sin(t), cos(t))
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Example

Consider the system

x ′(t) = −3x(t) +
√

2y(t)
y ′(t) =

√
2x(t)− 2y(t)

Every solution to this system is of the form

Φ(t) = c1(e−t ,
√

2e−t ) + c2(−
√

2e−4t ,e−4t )

Note: Solving systems like the one above will lead us to
consider eigenvalues and eigenvectors.
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Existence & Uniqueness

Theorem
In Eq. 1.1 suppose the functions F1, . . . ,Fn and
∂F1/∂x1, . . . , ∂F1/∂xn, . . . , ∂Fn/∂x1, . . . , ∂Fn/∂xn are
continuous in an open region R of the tx1x2 · · · xn-space and let
(t0, x0

1 , . . . , x
0
n ) ∈ Rn+1. Then there is an interval |t − t0| < h in

which there exists a unique solution x1 = φ1(t), . . . , xn = φn(t)
of the system Eq. 1.1 such that

(φ1(t0), . . . , φn(t0)) = (x0
1 , . . . , x

0
n ).
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Linear System

Definition
The system Eq. 1.1 is said to be linear if the functions
F1(t , x1, . . . , xn), . . . ,Fn(t , x1, . . . , xn) are linear in the variables
x1, . . . , xn. In which the system has the form

x ′1 = p11(t)x1 + · · · p1n(t)xn + g1(t)
... (1.2)

x ′n = pn1(t)x1 + · · · pnn(t)xn + gn(t)

We’ll say it is homogeneous in the case g1 = · · · gn = 0. Otherwise it
is said to be non-homogeneous.
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Existence & Uniqueness

Theorem
If the functions pij(t) (1 ≤ i , j ≤ n) and g1, . . . ,gn in Eq. 1.2 are
continuous on an open interval I : α < t < β, then there exists a
unique solution x1 = φ1(t), . . . , xn = φn(t) of the system Eq. 1.2
defined on all of I such that

(φ1(t0), . . . , φn(t0)) = (x0
1 , . . . , x

0
n ).
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Spring-Mass System

Consider
1 Two blocks of mass m1 and m2.
2 Three springs with spring constants k1, k2 and k3.
3 Assume an eternal force of F1(t) and F2(t) acting on the

masses.
We get (using arguments similar to those used for the hanging
block):

m1x ′′1 = −(k1 + k2)x1 + k2x2 + F1(t)
m2x ′′2 = k2x1 − (k2 + k3)x2 + F2(t)
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Spring-Mass System

4 Now make the substitution

y1 = x1, y2 = x2, y3 = x ′1y4 = x ′2

5 Then we get the following system of First-Order ODEs

y ′1 = y3

y ′2 = y4

y ′3 =
1

m1
(−(k1 + k2)y1 + k2y2 + F1(t))

y ′4 =
1

m2
(k2y1 − (k2 + k3)y2 + F2(t))
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2nd Order Linear ODE to System of 1st Order ODEs

Consider the 2nd Order ODE

u′′ + p(t)u′ + q(t)u = g(t)

Let x1 = u and x2 = u′.
Then our ODE is equivalent to

x ′1(t) = x2(t)
x ′2(t) = −q(t)x1(t)− p(t)x2(t) + g(t)

Moral: Second-order linear ODEs are really just systems
of First-Order linear ODEs.
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m × n Matrices

An m × n-matrix Ais a rectangular array of complex numbers of
the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn


The matrix is said to be square if m = n.
A (column) vector is an m × 1 matrix.
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Matrix Operations

Definition
Let A = (aij) be an m × n-matrix A

1 The transpose of A, denoted AT , is the n×m matrix obtained by
interchanging the rows and columns of A. Thus At = (aji).

2 The conjugate of A, denoted Ā is the m × n matrix obtained by
replacing aij by its conjugate āij . So, Ā = (āij).

3 The adjoint of A is given by A∗ = Āt .
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New Matrices from Old

Let A =

(
1 + 2i 3 5− i

0 2− 9i −4

)
, then

1 At =

 1 + 2i 0
3 2− 9i

5− i 0


2 Ā =

(
1− 2i 3 5 + i

0 2 + 9i −4

)

3 A∗ =

 1− 2i 0
3 2 + 9i

5 + i −4

.
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Matrix Addition & Multiplication

1 Let A = (aij) and B = (bij) be m × n-matrices, then
A + B = (aij + bij).

2 α ∈ C, then αA = (αaij)

3 If A = (aij) is m × n and B = (bij) is n × r , then AB is the
m × r matrix AB = (cij) where

cij =
n∑

k=1

aikbkj .

C.J. Sutton Systems of First Order ODEs, Part I



Introduction
Linear Algebra

Systems of 1st Order Linear ODEs: Theory

Matrices
Linear Independence
Systems and Eigenvalues

Inner Product

Let x =

 x1
...

xn

 , y =

 y1
...

yn

 ∈ Cn, be two vectors.

1 their inner product is the (complex) number

< x , y >= x t ȳ =
n∑
1

xi ȳi .

2 The length of x is given by

‖x‖ =< x , x >
1
2 .

3 x and y are said to be orthogonal if < x , y >= 0.
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Inner Product

Example

Let x =

 1
−1
3

 and y =

 3
0
−1

, then

‖x‖ =
√

11
x ⊥ y .
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The Determinant: the 2× 2-case

Let A =

(
a b
c d

)
be a 2× 2 matrix then the determinant is

given by
det(A) = ad − bc.
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The Determinant: the 3× 3-case

Let A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 be a 3× 3 matrix then the

determinant is given by

det(A) = a11(a22a33 − a32a23)− a12(a21a33 − a31a23)

+a13(a21a32 − a31a22)
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The Determinant: the General Case

Let A = (aij) be an n × n matrix

1 Let Mij be the (n − 1)× (n − 1) matrix formed by deleting
the i-th row and j-th column from A.

2 The determinant of A is the scalar given by

det(A) =
n∑

j=1

(−1)j+1a1j det(M1j).
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The Determinant: Exercises

Compute the determinant of the following matrices.

1 A =

 1 2 3
4 −1 2
1 0 1


2 B =

(
2 3
−2 7

)
3 C =

(
a− λ b

c d − λ

)
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Special Matrix: The Identity

The identity matrix I is the n × n matrix formed by placing ones
down the diagonal and zeroes in all the other entries. So we
have

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 .

If A is a square n × n matrix then

AI = IA = A.
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The Inverse

Let A be a square n × n matrix. A is said to be invertible or
non-singular if there exists an n × n matrix B such that

BA = AB = I.

If such a matrix exists it is unique and we denote it by A−1.

Theorem
Let A be a square n × n matrix. A is invertible if and only if
det(A) 6= 0.
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Computing A−1 via Cofactors

Let A be a square n × n matrix.
1 The cofactor associated to aij is

Cij = (−1)i+j det Mij ,

where Mij is the (n− 1)× (n− 1) matrix formed by deleting
the i-th row and j-th column.

2 If A is invertible, then

A−1 = (bij).,

where bij =
Cji

det A .
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Computing A−1 via Gaussian Elimination

Elementary Row Operations
1 interchange two rows
2 multiply a row by a non-zero scalar
3 adding any multiple of one row to another.

Transforming A through a sequence of elem. row ops. is
called Gaussian elimination or row reduction.
A invertible, then there is a sequnce of elem. row ops.
which transforms A to I and I to A−1.
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Computing A−1 via Gaussian Elimination

Example

Let A =

 1 0 2
1 3 1
1 0 1

. Use Gaussian elimination to show that

A−1 =

 −1 0 2
0 1/3 −1/3
1 0 −1

 .
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Matrix Functions

Let A(t) = (aij(t)) and B(t) = (bij(t)) be matrix functions, then:
d
dt A(t) = (a′ij(t))

If A and B are n ×m then

d
dt

(A(t) + B(t)) = A′(t) + B′(t).

If A is n × r and B is r ×m, then

d
dt

(A(t)B(t)) = A′(t)B(t) + A(t)B′(t).
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The Definition

Definition

k vectors ~x1, . . . , ~xk ∈ Rn are said to be linearly dependent if we can
find numbers c1, . . . , ck ∈ R not all zero such that

c1~x1 + · · ·+ ck~xk = 0.

Otherwise we say the vectors are linearly independent.

Examples
1 (1,0) and (0,1) are linearly independent in R2.
2 (1,0,0), (0,1,0) and (1,1,0) are linearly dependent in R3.
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A Test for Linear Independence

Theorem

Let x (1) = (x11, . . . , xn1), . . . x (n) = (x1n, . . . , xnn) be n vectors in
Rn, then they are linearly independent if and only if det(X) 6= 0,
where X = (xij).

Example
Are the following sets of vectors lin. indep.?

1 x (1) = (1,2,3), x (2) = (1,−1,0) and x (3) = (0,−1,1)

2 x (1) = (1,0,3), x (2) = (0,1,1) and x (3) = (−1,3,0)
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Systems & Matrices

A system of n equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1
...

an1x1 + an2x2 + · · ·+ annxn = bn

can be expressed as a matrix equation

Ax = b.
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Systems & Matrices

Definition
The equation Ax = b is said to be

homogeneous, if b = 0
inhomogeneous if b 6= 0

Theorem
Let A be an n × n matrix and b ∈ Rn a vector. Then

1 Ax = b has a unique solution if and only if det(A) 6= 0. In
which case the solution is x = A−1b.

2 if det(A) = 0, then Ax = b has no solutions or it has
infinitely many solutions.
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Systems & Matrices

Let A = (aij) be an n × n matrix

Then we can think of A as a (linear) map A : Rn → Rn.
To solve the equation Ax = b means to find (all) x ∈ Rn

such that Ax = b ∈ Rn.
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Eigenvectors & Eigenvalues

Consider the matrix A =

(
2 0
0 1

2

)
A scales the vector ζ1 =

(
1
0

)
by a factor of 2

(Actually, A scales any non-zero vector of the form

c
(

1
0

)
by a factor of 2.)

A scales the vector ζ2 =

(
0
1

)
by a factor of 1

2

(Actually, A scales any non-zero vector of the form

c
(

0
1

)
by a factor of 1

2 .)
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Eigenvectors & Eigenvalues

Consider the matrix B =

(
−3 0
0 1

)
B scales the vector ζ1 =

(
1
0

)
by a factor of −3.

(Actually, B scales any non-zero vector of the form

c
(

1
0

)
by a factor of −3.)

B fixes the vector ζ2 =

(
0
1

)
.

(Actually, B fixes any non-zero vector of the form c
(

0
1

)
is fixed by B.)
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Eigenvectors & Eigenvalues

Consider the matrix C =

(
5 0
−7 5

)
C scales the vector ζ1 =

(
0
1

)
by a factor of 5.

(Actually, C scales any non-zero vector of the form

c
(

0
1

)
by a factor of 5.)

C does not scale in any other directions.
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Eigenvectors & Eigenvalues

Consider the matrix D =

(
1 2
2 1

)
D scales the vector ζ1 =

(
1
1

)
by a factor of 3.

(Actually, D scales any non-zero vector of the form

c
(

1
1

)
by a factor of 3.)

D scales the vector ζ2 =

(
1
−1

)
by a factor of −1.

(Actually, D scales any non-zero vector of the form

c
(

1
−1

)
by a factor of −1.)

How did we know this?
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Eigenvectors & Eigenvalues

Given a matrix A it would be nice to find the non-zero
vectors x such that

Ax = λx.

Equivalently, we want λ ∈ C and x 6= 0 such that

Ax− λx = 0. (2.1)

There is a non-zero solution x to Eq 2.1 if and only if
det(A− λI) = 0.
So, the first order of business is to find those values of λ
such that

det(A− λI) = 0.
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Eigenvectors & Eigenvalues

Definition
Given an n × n matrix A its characteristic polynomial is the
polynomial of degree n given by

∆(t) = det(A− tI).

A root λ of ∆(t) is called an eigenvalue of the matrix A and a
corresponding non-zero vector x such that

Ax− λx = 0

is an eigenvector corresponding to λ.
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Eigenvectors & Eigenvalues

For a 2× 2-matrix A =

(
a b
c d

)
its characteristic polynomial

is the degree 2 polynomial given by

∆(t) = det
(

a− t b
c d − t

)
= t2 − (a + b)t + (ad − bc)

= t2 − Tr(A)t + det A
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Multiplicities

Definition
Let λ be an eigenvalue of an n × n matrix A. Then

1 the algebraic multiplicity of λ, denoted multalg(λ), is the number
of times λ appears as a root of ∆(t).

2 the geometric multiplicity of λ, denoted multgeom(λ), is the
maximal number of linearly independent eigenvectors associated
to λ.

We note that multgeom(λ) ≤ multalg(λ) ≤ n.
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Example I

Find the eigenvalues and eigenvectors of the matrix

A =

(
5 −1
3 1

)

The characteristic polynomial of A is:

∆(λ) = λ2 − 6λ+ 8

So the eigenvalues of A are λ1 = 2 and λ2 = 4.
We now want to find the corresponding eigenvectors...
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Example I (cont’d)

Case I: λ1 = 2

ζ =

(
ζ1
ζ2

)
6= 0 is an eigenvector corresponding to λ1 if

and only if
(A− λ1I2)ζ = 0.

This is equivalent to the system of equations

3ζ1 − ζ2 = 0
3ζ1 − ζ2 = 0

Hence, the eigenvectors are of the form

ζ = c
(

1
3

)
for c 6= 0.
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Example I (cont’d)

Case II: λ2 = 4

ζ =

(
ζ1
ζ2

)
6= 0 is an eigenvector corresponding to λ2 if

and only if
(A− λ2I2)ζ = 0.

This is equivalent to the system of equations

ζ1 − ζ2 = 0
3ζ1 − 3ζ2 = 0

Hence, the eigenvectors are of the form

ζ = c
(

1
1

)
for c 6= 0.
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Example II

Find the eigenvalues and eigenvectors of the matrix

A =

 3 2 4
2 0 2
4 2 3


The characteristic polynomial of A is:

∆(λ) = −λ3 + 6λ2 + 15λ+ 8

The eigenvalues of A are λ1 = λ2 = −1 and λ3 = 8.
We now want to find the corresponding eigenvectors...
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Example II (cont’d)

Case I: λ1 = λ2 = −1

ζ =

 ζ1
ζ2
ζ3

 6= 0 is an eigenvector corresponding to

λ1 = λ2 if and only if

(A− λ1I2)ζ = 0.

This is equivalent to the system of equations

4ζ1 + 2ζ2 + 4ζ3 = 0
2ζ1 + ζ2 + 2ζ3 = 0

4ζ1 + 2ζ2 + 4ζ3 = 0
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Example II (cont’d)

Case I: λ1 = λ2 = −1

Hence, the eigenvectors corresponding to λ1 = λ2 = −1
are of the form

ζ = c1

 1
−2
0

+ c2

 0
−2
1


for c1, c2 not both zero.
So, the eigenspace corresponding to the eigenvalue −1 is
two-dimensional.
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Example II (cont’d)

Case II: λ3 = 8

ζ =

 ζ1
ζ2
ζ3

 6= 0 is an eigenvector corresponding to

λ1 = λ2 if and only if

(A− λ3I2)ζ = 0.

This is equivalent to the system of equations

−5ζ1 + 2ζ2 + 4ζ3 = 0
2ζ1 − 8ζ2 + 2ζ3 = 0
4ζ1 + 2ζ2 − 5ζ3 = 0
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Example II (cont’d)

Case II: λ3 = 8

Hence, the eigenvectors corresponding to λ3 = 8 are of
the form

ζ = c

 2
1
2


for c 6= 0.
So, the eigenspace corresponding to the eigenvalue 8 is
one-dimensional.
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Exercises

Find the eigenvalues and eigenvectors of the following matrices

1 A =

(
−1 2
3 0

)
2 B =

( 7
2

3
2

−3
2

1
2

)

3 C =

 0 1 1
1 0 1
1 1 0


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A general system of first-order linear ODEs is of the form

x ′(t) = P(t)x(t) + g(t),

where x(t) =


x1(t)
x2(t)

...
xn(t)

, g(t) =


g1(t)
g2(t)

...
gn(t)

 and

P(t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
... 0

...
pn1(t) pn2(t) · · · pnn(t)

 .
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Principle of Superposition

Proposition

Let x (1)(t), . . . , x (n)(t) be vector functions which solve

x ′ = P(t)x .

Then for any c1, . . . , cn ∈ R we see that

x(t) = c1x (1)(t) + · · ·+ cnx (n)(t)

also solves the equation.
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The Wronskian

Let x (1)(t), . . . , x (n)(t) be vector functions, then the Wronskian
is defined by

W [x (1), . . . , x (n)](t) = det X(t),

where

X(t) =


x11(t) x12(t) · · · x1n(t)
x21(t) x22(t) · · · x2n(t)

...
...

...
...

xn1(t) xn2(t) · · · xnn(t)


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The Wronskian

Proposition

The vector functions x (1)(t), . . . , x (n)(t) are linearly independent
at t0 if and only if

W [x (1), . . . , x (n)](t0) 6= 0.
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The Wronskian

Proposition

Suppose x (1)(t), . . . , x (n)(t) are solutions to

x ′ = P(t)x , α < t < β (3.1)

such that W [x (1), . . . , x (n)](t) 6= 0 for all α < t < β. Then for
each x = φ(t) solving Eq. 3.1 there exist unique constants
c1, . . . , cn ∈ R such that

φ(t) = c1x (1)(t) + · · ·+ cnx (n)(t).

In this case we call {x (1)(t), . . . , x (n)(t)} a fundamental set of
solutions.
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The Wronskian

Proposition

If x (1)(t), . . . , x (n)(t) are solutions to

x ′ = P(t)x , α < t < β,

then on this interval W [x (1), . . . , x (n)](t) is either identically zero
or never vanishes on α < t < β.

Corollary
A homogeneous linear system of the form

x ′ = P(t)x , α < t < β,

always has a fundamental set of solutions.
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