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The Definition

Definition
The expression

∞∑
j=0

aj ,

where the aj ’s are real (or complex numbers) is called a series. For
each N = 1,2,3, . . . the expression

SN =
N∑

j=0

aj = a0 + a1 + · · ·+ aN

is called the N-th partial sum of the series.
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Convergence of a Series

Definition
The series

∑∞
j=0 aj , is said to converge if

lim
N→∞

SN = lim
N→∞

N∑
j=0

aj

exists. Otherwise we say the series diverges.
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A Convergent Series

The series
∑∞

j=0
1
2j converges to 2:

Sn = 1 + 1
2 + 1

4 + · · · 1
2n

Sn + 1
2n+1 = Sn+1 = 1 + 1

2Sn

Solving for Sn we get

Sn =
1− 1

2n+1

1− 1
2

= 2(1− 1
2n+1 )

Therefore,
lim

n→∞
Sn = 2.
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A Divergent Series

The series
∑∞

j=1
1
j diverges:

S1 = 1
S2 = 3

2

S4 = 1 + 1
2 + (1

3 + 1
4) ≥ 4

2

In general

S2k ≥
k + 2

2
.

Therefore
lim

n→∞
Sn =∞
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Convergence Tests: The Comparison Test

Theorem
Suppose that

∑∞
j=0 aj is a convergent series where aj ≥ 0 for all

j . If {bj}∞j=1 is a sequence of numbers such that |bj | ≤ aj for all
j , then the series

∑∞
j=0 bj converges.
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Convergence Tests: The Comparison Test

The series
∑∞

j=0
sin(j)

2j converges:

We recall that
∑∞

j=0
1
2j = 2.

|sin(j)
2j | ≤ 1

2j | for all j .
Hence by the Comparison Test the series

∞∑
j=0

sin(j)
2j

converges.

C.J. Sutton Series Solutions of Second Order Linear ODEs



Review of Power Series
Series Solutions

Euler Equations & Regular Singular points

Series
Power Series

Convergence Tests: The Ratio Test

Theorem
Consider a series

∑∞
j=0 aj of non-zero terms. If

lim
j→∞

|aj+1|
|aj |

< 1,

then the series converges.
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Convergence Tests: The Ratio Test

The series
∑∞

j=1
2j

j! converges:

aj = 2j

j!

limj→∞
|aj+1|
|aj | = 2

j+1 = 0

Therefore by the Ratio Test, the series converges.
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Convergence Tests: The Alternating Series Test

Theorem
Let {bj}∞j=1 be a sequence of nonnegative numbers such that

1 b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0;
2 limj→∞ bj = 0.

Then the series
∞∑

j=1

(−1)jbj

converges
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Convergence Tests: The Alternating Series Test

The series
∑∞

j=1
(−1)j

j converges:

let bj = 1
j

then bj ≥ bj+1 ≥ 0 and limj→∞ bj = 0
Therefore by the Alternating Series Test the series
converges.

C.J. Sutton Series Solutions of Second Order Linear ODEs



Review of Power Series
Series Solutions

Euler Equations & Regular Singular points

Series
Power Series

The Definition

Definition
The expression

∞∑
n=0

an(x − x0)
n

is said to be a power series expanded about x0. For each
N = 1,2,3, · · · the expression

SN(x) =
N∑

j=0

aj(x − x0)
j

is said to be the N-th partial sum of the Power series.
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The Definition

Definition
The power series

∑∞
n=0 an(x − x0)

n is said to
1 converge at x if

lim
N→∞

SN(x) = lim
N→∞

N∑
j=0

aj(x − x0)
j

exists.
2 converge absolutely at x if the series

∑∞
n=0 |an||x − x0|n

converges at x ; that is, limN→∞
∑N

n=0 |an||x − x0|n exists.
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Absolute Convergence implies Convergence

Proposition

If the series
∑∞

n=0 an(x − x0)
n converges absolutely at x, then it

converges. The converse need not be true.

Example

The power series
∑∞

j=0
(−1)j

j x j converges at x = 1 (by the alternating
series test), but it does not converge absolutely at x = 1 since the
harmonic series

∞∑
j=1

1
j

diverges.
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Interval of Convergence

Proposition

Assume
∑∞

n=0 an(x − x0)
n converges for x = c. Then the power

series converges for all x such that

|x − x0| < r = |c − x0|.

Hence, the set

{x ∈ R :
∞∑

n=0

an(x − x0)
n converges }

is an interval centered at x0.
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Radius of Convergence

Definition
The radius of convergence ρ of the power series

∑∞
n=0 an(x − x0)

n is

ρ = Max{r :
∞∑

n=0

an(x − x0)
n converges for all |x − x0| < r}.
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Real Analytic

Definition
A function f : U ⊂ R→ R is said to be real analytic if for each
x0 ∈ U f (x) may be represented by a convergent power series on an
interval I ⊂ U of positive radius centered at x0:

f (x) =
∑

an(x − x0)
n.
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Properties

Let f (x) =
∑

an(x − x0)
n and g(x) =

∑
bn(x − x0)

n be power
series centered at x0 which converge on intervals I1 and I2
containing x0 (resp.). Then on I1 ∩ I2 we have

1 f (x)± g(x) =
∑

(an ± bn)(x − x0)
n

2 f (x)g(x) =
∑∞

m=0
∑

j+k=m(ajbk )(x − x0)
m.
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The Ratio Test

Theorem (Ratio Test)

Consider the power series
∑∞

n=0 an(x − x0)
n and assume

limj→∞ |
aj+1
aj
| exists and equals L. Then the power series

1 converges for x such that |x − x0|L < 1,
2 diverges for x such that |x − x0|L > 1, and
3 for x such that |x − x0|L = 1 we don’t know.
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The Ratio Test: Examples

1 cos(x) =
∑∞

j=0
(−1)j

(2j)! x2j converges for all x .

2
∑∞

n=1
n2

2n (x − 3)n converges for all x such that |x − 3| < 2
and diverges for |x − 3| > 2. Need to check by hand the
case |x − 3| = 2

3
∑∞

n=1
(x+1)n

n2n converges absolutely for |x + 1| < 2 and
diverges for |x + 1| > 2. Need to check the case
|x + 1| = 2 by hand.
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Shifting Indices

1 Consider the series
∑∞

n=k anxn

2 Make the substitution m = n − k
3 Then

∞∑
n=k

anxn =
∞∑

m=0

am+kxm+k

=
∞∑

n=0

an+2xn+2
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Shifting Indices: Examples

Write the following series so that the generic term involves xn

1
∑∞

n=2 n(n − 1)anxn−2.
2

∑∞
n=1 nanxn−1 + x

∑∞
n=0 anxn.

3
∑∞

n=2 n(n − 1)anxn−2 +
∑∞

n=0 anxn.
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Differentiating and Integrating

Definition
Let

∑∞
n=0 an(x − x0)

n be a power series.
1 The derived series is

∑∞
n=1 nan(x − x0)

n−1

2 The integrated series is
∑∞

n=0 an
(x−x0)

n+1

n+1

Theorem
The derived and integrated series have the same radius of
convergence as

∑∞
n=0 an(x − x0)

n.
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Infinitely Differentiable

Theorem
Let f (x) be a real analytic function defined on an open interval
I. Then f is continuous and has continuous, real analytic
derivatives of all orders. In fact, the derivatives of f are obtained
by differentiating its series representation term by term.
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Infinitely Differentiable

Corollary
Let f be represented by a convergent power series on an
interval of positive radius centered at x0

f (x) =
∞∑

n=0

an(x − x0)
n,

then

an =
f (n)(x0)

n!
.
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Examples

1 Find the radius of convergence of the following power
series.

a)
∑∞

n=0
n
2n xn

b)
∑∞

n=0
(2x+1)n

n2

2 Find the Taylor Series of f (x) = 1
1−x at x0 = 0.
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Example

1 Consider the differential equation y ′′ + y = 0.
2 Assume that y(x) =

∑∞
n=0 anxn.

3 We obtain the recurrence relation

a2k = (−1)k a0

(2k)!
and a2k+1 = (−1)k a1

(2k + 1)!
.

4 Then

y(x) = a0

∞∑
k

(−1)k x2k

(2k)!
+ a1

∞∑
k

(−1)k x2k+1

(2k + 1)!

= a0 cos(x) + a1 sin(x)
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The Method

1 Consider P(x)y ′′ + Q(x)y ′ + R(x)y = 0
( where P,Q,R are polynomials with no common factors.)

2 Suppose P(x0) 6= 0, then x0 is called an ordinary point.
Otherwise we say x0 is singular.

3 Then on some interval I containing x0 we can write the
ODE as

y ′′ + p(x)y ′ + q(x)y = 0.
4 Assume y(x) =

∑∞
n=0 an(x − x0)

n and converges for
|x − x0| < ρ.

5 Substitute y , y ′ and y ′′ into ODE and try to find a
recurrence relation for the an’s. (This will require us to write
the rational functions p and q as power series centered at
x0.)
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Airy’s Equation: Series Solution at x0 = 0

Find a power series solution to y ′′ − xy = 0 in a neighborhood
of x = 0.

1 Assume y(x) =
∑∞

n=0 anxn

2 y ′′ =
∑∞

n=0(n + 2)(n + 1)an+2xn.
3 Then since y ′′ − xy = 0 we get

0 =
∞∑

n=0

(n + 2)(n + 1)an+2xn − x
∞∑

n=0

anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=0

anxn + 1

= 2a2 +
∞∑

n=1

((n + 2)(n + 1)an+2 − an−1)xn
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Airy’s Equation: Series Solution at x0 = 0

We then conclude
a2 = 0
we have the general recurrence relation

an+2 =
an−1

(n + 2)(n + 1)
n ≥ 1.

Which implies that for n ≥ 1

a3n =
a0

(2 · 3)(5 · 6) · · · (3n − 1)(3n)

a3n+1 =
a1

(3 · 4)(6 · 7) · · · (3n)(3n + 1)

a3n+2 = a2 = 0
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Airy’s Equation: Series Solution at x0 = 0

It then follows that our solution y(x) has a Taylor series
expansion of the form:

y(x) =
∞∑

n=0

a3nx3n +
∞∑

n=0

a3n+1x3n+1 +
∞∑

n=0

a3n+2x3n+2

=
∞∑

n=0

a3nx3n +
∞∑

n=0

a3n+1x3n+1

= a0

{
1 +

∞∑
n=1

1
(2 · 3)(5 · 6) · · · (3n − 1)(3n)

x3n

}

+a1

{
x +

∞∑
n=1

1
(3 · 4)(6 · 7) · · · (3n)(3n + 1)

x3n+1

}
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Airy’s Equation: Series Solution at x0 = 0

Setting
y1(x) = 1 +

∑∞
n=1

1
(2·3)(5·6)···(3n−1)(3n)x

3n

y2(x) = x +
∑∞

n=1
1

(3·4)(6·7)···(3n)(3n+1)x
3n+1

We can conclude that y1 and y2 are analytic functions which

1 Have an infinite radius of convergence (why?)
2 Solve Airy’s Equation on −∞ < x <∞ (why?)
3 Form a fundamental set of solutions on −∞ < x <∞

(why?). Hence, the general solution to Airy’s equation is

y(x) = c1y1(x) + c2y2(x).
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Airy’s Equation: Series Solution at x0 = 1

Find a power series solution to y ′′ − xy = 0 in a neighborhood
of x = 1.

1 Assume y(x) =
∑

an(x − 1)n

2 y ′′ =
∑∞

n=0(n + 2)(n + 1)an+2(x − 1)n.
3 Then since y ′′ − xy = 0 we have

0 =
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n − x
∞∑

n=0

an(x − 1)n

=
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n

−(1 + (x − 1))
∞∑

n=0

an(x − 1)n
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Airy’s Equation: Series Solution at x0 = 1

Continuing we have

0 =
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n

−

{
a0 +

∞∑
n=1

(an + an−1)(x − 1)n

}

= (2a2 − a0) +
∞∑

n=1

((n + 2)(n + 1)an+2 − an − an−1)(x − 1)n
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Airy’s Equation: Series Solution at x0 = 1

From which we deduce:
a2 = a0

2

an+2 =
an+an−1

(n+2)(n+1) n ≥ 1

And we get

y(x) = a0{1 +
(x − 1)2

2
+

(x − 1)3

6
+

(x − 1)4

24
+

(x − 1)5

30
+ · · · }

+ a1{(x − 1) +
(x − 1)3

6
+

(x − 1)4

12
+

(x − 1)5

120
+ · · · }

Hard to figure out a closed form formula for the an’s.
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Airy’s Equation: Series Solution at x0 = 1

Setting

y1(x) = 1 + (x−1)2

2 + (x−1)3

6 + (x−1)4

24 + (x−1)5

30 + · · ·

y2(x) = (x − 1) + (x−1)3

6 + (x−1)4

12 + (x−1)5

120 + · · ·

We’d like to be able to say what the radius of convergence of y1
and y2 is. However, since we cannot get a closed formula for
the an’s we cannot do this directly via the ratio test. We will see
in the next part that we will be able to estimate the radius of
convergence . . .

C.J. Sutton Series Solutions of Second Order Linear ODEs



Review of Power Series
Series Solutions

Euler Equations & Regular Singular points

Motivating Example
Solutions Near Ordinary Points, Part 1
Solutions Near Ordinary Points, Part 2

Ordinary Point Revisited

Question
Do we really need to assume that P,Q and R are polynomials?

Definition
x0 is said to be an ordinary point of the differential equation

P(x)y ′′ + Q(x)y ′ + R(x)y = 0

if the functions p(x) = Q(x)
P(x) and q(x) = R(x)

Q(x) are analytic at x0.
Otherwise, we say that x0 is a singular point.
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Ordinary Point Revisited

Theorem
If x0 is an ordinary point of the equation

P(x)y ′′ + Q(x)y ′ + R(x)y = 0,

then the general solution is of the form

y =
∑

an(x − x0)
n = a0y1(x) + a1y2(x),

where a0 and a1 are arbitrary and y1 and y2 are linearly
independent series solutions centered at x0. The radius of
convergence of the Taylor series of the yi ’s centered at x0 is at
least as large as the minimum of the radii of convergence of the
Taylor series of p and q centered at x0.
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Ordinary Point Revisited

The solutions y1 and y2 in the previous theorem will be of the
form:

y1(x) = 1 + 0(x − x0) + b2(x − x0)
2 + b3(x − x0)

3 + · · ·

and

y2(x) = 0 + 1(x − x0) + c2(x − x0)
2 + c3(x − x0)

3 + · · ·

y1 corresponds to the initial conditions

y(x0) = 1, y ′(x0) = 0

y2 corresponds to the initial conditions

y(x0) = 0, y ′(x0) = 1
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A Useful fact

Proposition

Consider the rational function h(x) = Q(x)/P(x), where P and
Q are polynomials that do not have common factors. Then h is
analytic at x0 if and only if P(x0) 6= 0. In the event that h is
analytic at x0, then the radius of convergence ρ of the Taylor
series expansion of h at x0 is given by

ρ = min{|x0 − r1|, . . . , |x0 − rk |},

where r1, . . . , rk are the roots of P(x).

Remark
The polynomial P(x) might have complex roots, in which case the
distance computed above is the distance in the complex plane.
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A Useful fact

Corollary

Consider the ODE P(x)y ′′ + Q(x)y ′ + R(x)y = 0, where P,Q
and R be polynomials (without common factors). If x0 is a
regular point of this ODE and r1, . . . , rk are the roots of P(x),
then the general solution of the ODE on an interval containing
x0 is of the form

y(x) = a0y1(x) + a1y2(x),

where y1 and y2 are analytic functions at x0 and the radii of
convergence of their respective Taylor series centered at x0 are
larger than min{|x0 − r1|, . . . , |x0 − rk |}.
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A Useful fact

Moral
The orevious corollary allows us to estimate the radius of convergence
(and hence the interval of solution) of our ODE without explicitly
calculating the an’s and using the ration test. Indeed, recall Airy’s
equation

y ′′ − xy = 0.

This has an analytic solution y(x) =
∑∞

n=0 an(x − 1)n at x0 = 1, but
we previously noticed it was not possible to find a closed formula for
the an’s. However, since p(x) = 0 and q(x) = −x = −1− (x − 1)
both have infinite radii of convergence at x0 = 1, we see that the
analytic solution y(x) centered at x0 = 1 will also have infinite radius
of convergence.
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Examples

Determine a lower bound for the radius of convergence of the
series solution of

(x2 − 2x − 3)y ′′ + xy ′ + 4y = 0

centered at
1 x0 = 4;
2 x0 = 0;
3 x0 = −4.
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Examples

Question
How do we analyze/solve 2nd order ODEs near singular points?
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Euler’s Equation

Consider the homogeneous ODE

L[y ] = x2y ′′ + αxy ′ + βy = 0

Has a singularity at x = 0
Suppose the solution is of the form y = x r ≡ er ln(x)

Then we get L[x r ] = 0 if and only if

F (r) = r(r − 1) + αr + β = 0

But, F (r) = (r − r1)(r − r2), where

r1, r2 =
−(α− 1)±

√
(α− 1)2 − 4β

2
.
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Euler’s Equation: Real, Distinct Roots

if r1 6= r2 are real, then

W (x r1 , x r2) = (r2 − r1)x r1+r2+1.

does not vanish for x > 0
Hence {x r1 , x r2} is a fundamental set of solutions to the
ODE on x > 0.
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Example: Euler’s Equation with Real, Distinct Roots

Solve the initial value problem

2x2y ′′ + 3xy ′ − y = 0, y(1) = 1, y ′(1) = 2, x > 0

the General solution to ODE on x > 0 is

y(x) = c1x1/2 + c2x−1.

On x > 0 the IVP is satisfied by

y(x) = 2x1/2 − x−1.
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The Derivation: Equal Roots

Recall that x r = er ln(x), so ∂
∂r x r = x r ln(x).

Suppose r1 = r2, then F (r) = (r − r1)
2.

∂
∂r L[x r ] = ∂

∂r (x
r F (r))

L[x r ln(x)] = L[
∂

∂r
x r ]

=
∂

∂r
L[x r ]

= x r ln(x)(r − r1)
2 + 2(r − r1)x r

= 0 (if r = r1)
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The Derivation: Equal Roots

Hence, x r1 ln(x) is a solution.
W (x r1 , x r1 ln(x)) = x2r1−1 > 0 for x > 0
Hence {x r1 , x r1 ln(x)} forms a fundamental set of solutions.
The general solution in this case is

(c1 + c2 ln(x))x r1 .
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An Example: Euler’s Equation with Equal Roots

Solve the following 2nd order IVP

x2y ′′ + 5xy ′ + 4y = 0, y(1) = 2, y ′(1) = 0, x > 0

the General solution to ODE on x > 0 is

y(x) = x−2(c1 + c2 ln(x).

On x > 0 the IVP is satisfied by

y(x) = x−2(2 + 2 ln(x)) = 2x−2(1 + ln(x)).
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The Derivation: Complex Roots

r1 = λ+ iµ, r2 = λ− iµ
So for x > 0

x r1 = e(λ+iµ) ln(x)

= eλ ln(x)+iµ ln(x)

= eλ ln(x)eiµ ln(x)

= xλ(cos(µ ln(x)) + i sin(µ ln(x)))

and
x r2 = xλ(cos(µ ln(x))− i sin(µ ln(x))).
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The Derivation: Complex Roots

{x r1 , x r2} forms a Fundamental set of solutions
{xλ cos(µ ln(x)), xλ sin(µ ln(x))} is a fundamental set of
solutions consisting of real-valued functions.
So the general solution is of the form

c1xλ cos(µ ln(x)) + c2xλ sin(µ ln(x)), x > 0.
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Example: Euler’s Equation with Complex Roots

Solve the IVP

x2y ′′ + xy ′ + y = 0, y(1) = 0, y ′(1) = 3, x > 0

the General solution to ODE on x > 0 is

y(x) = c1 cos(ln(x)) + c2 sin(ln(x)).

On x > 0 the IVP is satisfied by

y(x) = 3 sin(ln(x)).
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What about x < 0?

In the three previous cases we restricted to the in interval
x > 0.
On the interval x < 0 we get

y(x) =


c1|x |r1 + c2|x2|r2

(c1 + c2 ln(|x |))|x |r1

c1|x |λ cos(µ ln(|x |)) + c2|x |λ sin(µ ln(|x |))

Depending on the roots r1, r2 of F (r) = r(r − 1) + αr + β.
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The Definition

Definition
Consider the second order ODE of the form

P(x)y ′′ + Q(x)y ′ + R(x)y = 0.

and let x0 be a point where P(x0) = 0. x0 is said to be a regular
singular point if

lim
x→x0

(x − x0)
Q(x)

P(x)
and lim

x→x0
(x − x0)

2 R(x)

P(x)

are both finite. Otherwise, we say x0 is an irregular singular point.
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The Moral

The singularity at x0 = 0 of Euler’s equation is regular.
In general one can handle regular singular points in
manner analogous to what we did for Euler’s equation.
We won’t cover this, but it is useful in studying Bessel’s
equation.
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Problems

1 Classify the singular points of the following ODE

2x(x − 2)2y ′′ + 3xy ′ + (x − 2)y = 0.

2 Find the general solution to the following ODE that is valid
on any interval not containing the singular point.

(x − 1)2y ′′ + 8(x − 1)y ′ + 12y = 0
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