Second Order Linear ODEs, Part II

Craig J. Sutton craig.j.sutton@dartmouth.edu

Department of Mathematics Dartmouth College

Math 23 Differential Equations Winter 2013

C.J. Sutton Second Order Linear ODEs, Part II

ヘロト ヘアト ヘビト ヘビト

ъ

Outline

- Non-homogeneous Linear Equations
- 2 Method of Undetermined Coefficients
 - Motivating Examples
 - What's going on?
 - Exercises
- 3 Variation of Parameters

4 Applications

- Mechanical Vibration
- Undamped & Damped Free Vibration
- Forced Vibrations

< 🗇 ▶

★ 문 ► ★ 문 ►

Outline

- 1 Non-homogeneous Linear Equations
 - 2 Method of Undetermined Coefficients
 - Motivating Examples
 - What's going on?
 - Exercises
- 3 Variation of Parameters
- 4 Applications
 - Mechanical Vibration
 - Undamped & Damped Free Vibration
 - Forced Vibrations

くロト (過) (目) (日)

The Idea

Question

How do we find the general solutions to a non-homogeneous 2nd order linear ODE

$$y'' + p(t)y' + q(t)y = g(t)?$$

We recall that there is an associated homogeneous equation

$$y'' + p(t)y' + q(t)y = 0.$$

ヘロト ヘアト ヘビト ヘビト

ъ

The Idea

Theorem

Let $Y_1(t)$ and $Y_2(t)$ be two solutions to the non-homogeneous linear equation

$$y'' + p(t)y' + q(t)y = g(t),$$
 (1.1)

then $Y_1 - Y_2$ solves the corresponding homogeneous equation. Hence, the general solution to Eq. 1.1 is of the form

$$\phi(t) = Y(t) + c_1 y_1(t) + c_2 y_2(t),$$

where Y is some solution to Eq. 1.1 and y_1 and y_2 form a fundamental set of solutions for the corresponding homogeneous equation.

The Idea

So our strategy for solving

$$y'' + p(t)y' + q(t)y = g(t)$$

is:

- Find some solution Y(t) to the non-homogeneous equation.
- Solution Find the general solution $c_1y_1(t) + c_2y_2(t)$ of the associated homogeneous equation.
- So Then $Y(t) + c_1y_1(t) + c_2y_2(t)$ is the general solution.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Motivating Examples What's going on? Exercises

Outline

Non-homogeneous Linear Equations

- 2 Method of Undetermined Coefficients
 - Motivating Examples
 - What's going on?
 - Exercises
- 3 Variation of Parameters

4 Applications

- Mechanical Vibration
- Undamped & Damped Free Vibration
- Forced Vibrations

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivating Examples What's going on? Exercises

Motivating Example I

Consider the equation

$$y'' - 5y' + 6y = 3\sin(t).$$

Step 1: Find a solution Y(t)

Since RHS involves trig functions we assume

$$Y(t) = A\cos(t) + B\sin(t)$$

• Then $Y'(t) = -A\sin(t) + B\cos(t)$ and $Y''(t) = -A\cos(t) - B\sin(t)$.

Substitute to get system:

$$5A - 5B = 0$$

$$5A + 5B = 3$$

• $A = \frac{3}{10}$ and $B = \frac{3}{10}$.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Motivating Examples What's going on? Exercises

Motivating Example I

Step 2: Fundamental Set

- Corresponding homogeneous equation y'' 5y' + 6y = 0.
- General solution of homog. eq. is

$$c_1 e^{-3t} + c_2 e^{-2t}$$
.

Step 3: General solution non-homog. eq. is given by

$$\phi(t) = \frac{3}{10}\cos(t) + \frac{3}{10}\sin(t) + c_1e^{-3t} + c_2e^{-2t}$$

・ロト ・ 理 ト ・ ヨ ト ・

1

Motivating Examples What's going on? Exercises

Motivating Example I

Moral

By taking our lead from the RHS of the equation

$$y^{\prime\prime}-5y^{\prime}+6y=3\sin(t)$$

and assuming $Y = A\cos(t) + B\sin(t)$ we found the general solution to our problem.

・ロット (雪) () () () ()

Motivating Examples What's going on? Exercises

Motivating Example II

Consider the equation

$$y'' - 3y' - 4y = 3e^{2t}$$
.

Step 1: Find a solution Y(t)

- Since RHS involves an exponential assume $Y(t) = Ae^{2t}$.
- Then $Y'(t) = 2Ae^{2t}$ and $Y''(t) = 4Ae^{2t}$.
- Substituting we get $-6Ae^{2t} = 3e^{2t}$.
- Hence, $A = -\frac{1}{2}$ and

$$Y(t)=-\frac{1}{2}e^{2t}.$$

イロト 不得 とくほ とくほ とう

Motivating Examples What's going on? Exercises

Motivating Example II

Step 2: Fundamental Set

- Corresponding homogeneous equation y'' 3y' 4y = 0.
- General solution of homog. eq. is

$$c_1 e^{-1t} + c_2 e^{4t}$$

Step 3: General solution non-homog. eq. is given by

$$\phi(t) = -\frac{1}{2}e^{2t} + c_1e^{-t} + c_2e^{4t}.$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Motivating Examples What's going on? Exercises

Motivating Example II

Moral

By taking our lead from the RHS of the equation

$$y^{\prime\prime}-3y^{\prime}-4y=3e^{2t}$$

and assuming $Y = Ae^{2t}$ we found the general solution to our problem.

イロン 不同 とくほ とくほ とう

Motivating Examples What's going on? Exercises

Motivating Example III

Consider the equation

$$y'' - 3y' - 4y = 2e^{-t}$$
.

Step 1: Find a solution Y(t).

- Since RHS involves an eponential assume $\tilde{Y}(t) = Ae^{-t}$.
- But Ae^{-t} solves homogeneous equation. Hmm...

• Assume
$$Y(t) = Ate^{-t}$$

- Then $Y'(t) = Ae^{-t} Ate^{-t}$ and $Y''(t) = -2Ae^{-t} + Ate^{-t}$.
- Substituting we get $A = -\frac{2}{5}$.
- Hence, $Y(t) = -\frac{2}{5}te^{-t}$ solves our equation.

・ロト ・ 理 ト ・ ヨ ト ・

Motivating Examples What's going on? Exercises

Motivating Example III

Step 2: Fundamental Set

- Corresponding homogeneous equation y'' 3y' 4y = 0.
- General solution o homog. eq. is

$$c_1 e^{-1t} + c_2 e^{4t}$$

Step 3: General solution non-homog. eq. is given by

$$\phi(t) = -\frac{2}{5}te^{-t} + c_1e^{-t} + c_2e^{4t}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Motivating Examples What's going on? Exercises

Motivating Example IV

Consider the equation

$$y'' + 3y' + y = t^3 + 3t + 5.$$

Step 1: Find a solution Y(t).

- Since RHS involves a polynomial assume $Y(t) = A_3 t^3 + A_2 t^2 + A_1 t + A_0$.
- Then $Y'(t) = 3A_3t^2 + sA_2t + A_1$ and $Y''(t) = 6A_3t + 2A_2$.
- Substituting we conclude

$$A_0 = -130, A_1 = 51, A_2 = -9, A_3 = 1.$$

• Hence, $Y(t) = t^3 - 9t^2 + 51t - 130$ solves our equation.

・ロト ・ 理 ト ・ ヨ ト ・

Motivating Examples What's going on? Exercises

Motivating Example IV

Step 2: Fundamental Set

- Corresponding homogeneous equation y'' + 3y' + y = 0.
- General solution to homog. eq. is

$$c_1 e^{\frac{-3+\sqrt{5}}{2}t} + c_2 e^{\frac{-3-\sqrt{5}}{2}t}.$$

Step 3: General Solution to non-homog. eq. is given by

$$\phi(t) = t^3 - 9t^2 + 51t - 130 + c_1 e^{\frac{-3+\sqrt{5}}{2}t} + c_2 e^{\frac{-3-\sqrt{5}}{2}t}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э.

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)$

• Let
$$P_n(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$
.

 To find a solution of ay" + by' + cy = P_n(t), our candidate is of the form

$$Y(t) = t^{s}(A_{n}t^{n} + A_{n-1}t^{n-1} + \dots + A_{1}t + A_{0}),$$

where *s* equals the number of times 0 is a root of the characteristic equation $ax^2 + bx + c$.

<ロ> <四> <四> <四> <三</td>

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)$

- Consider 3*y*["] − 2*y*['] = *t* + 5
- The RHS is a polynomial
- Since 0 is a single root of 3x² 2x, our candidate is of the form

$$Y(t) = t^{1}(A_{1}t + A_{0}) = A_{1}t^{2} + A_{0}t$$

• Substituting we find $A_1 = -\frac{1}{4}$ and $A_0 = -\frac{13}{4}$, and we conclude that

$$Y(t) = -\frac{1}{4}t^2 - \frac{13}{4}t$$

is a solution to our ODE. What is the general solution?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}$

- As before, let $P_n(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$
- Let α be some real constant.
- To solve ay" + by' + cy = P_n(t)e^{αt}, our candidate is of the form

$$Y(t) = t^{\mathbf{s}}(A_nt^n + A_{n-1}t^{n-1} + \cdots + A_1t + A_0)e^{\alpha t},$$

where *s* equals the number of times α is a root of the characteristic equation $ax^2 + bx + c$.

イロト イポト イヨト イヨト 三日

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}$

- Consider $y'' 6y' + 9y = e^{3t}$
- the RHS is 1e^{3t}
- Since 3 is a double root of $x^2 6x + 9$, our candidate is of the form

$$Y(t) = t^2 A_0 e^{3t}$$

• Substituting we find $A_0 = \frac{1}{2}$ and we conclude

$$Y(t)=\frac{1}{2}t^2e^{3t}$$

is a solution to our ODE. What is the general solution?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}\cos(\beta t)$

- As before, let $P_n(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$
- Let α and β be some real constant.
- To solve $ay'' + by' + cy = P_n(t)e^{\alpha t}\cos(\beta t)$, our candidate is of the form

$$Y(t) = t^{s}(A_{n}t^{n} + A_{n-1}t^{n-1} + \dots + A_{1}t + A_{0})e^{\alpha t}\cos(\beta t) + t^{s}(B_{n}t^{n} + B_{n-1}t^{n-1} + \dots + B_{1}t + B_{0})e^{\alpha t}\sin(\beta t)$$

where *s* equals the number of times $\alpha + i\beta$ is a root of the characteristic equation $ax^2 + bx + c$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}\cos(\beta t)$

- Consider $y'' + 4y = \cos(2t)$
- The RHS is $1e^{0t}\cos(2t)$.
- Since 0 + i2 is a single root of $x^2 + 4$, our candidate is of the form

$$Y(t) = t^{1} e^{0t} (A_{0} \cos(2t) + B_{0} \sin(2t)) = t (A_{0} \cos(2t) + B_{0} \sin(2t))$$

• Substituting we find $A_0 = 0$ and $B_0 = \frac{1}{4}$ and we conclude

$$Y(t) = \frac{1}{4}t\sin(2t)$$

is a solution to our ODE. What is the general solution?

ヘロア 人間 アメヨア 人口 ア

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}\sin(\beta t)$

- As before, let $P_n(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$
- Let α and β be some real constant.
- To solve $ay'' + by' + cy = P_n(t)e^{\alpha t}\sin(\beta t)$, our candidate is of the form

$$Y(t) = t^{s}(A_{n}t^{n} + A_{n-1}t^{n-1} + \dots + A_{1}t + A_{0})e^{\alpha t}\cos(\beta t) + t^{s}(B_{n}t^{n} + B_{n-1}t^{n-1} + \dots + B_{1}t + B_{0})e^{\alpha t}\sin(\beta t)$$

where *s* equals the number of times $\alpha + i\beta$ is a root of the characteristic equation $ax^2 + bx + c$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Motivating Examples What's going on? Exercises

Solving $ay'' + by' + cy = P_n(t)e^{\alpha t}\sin(\beta t)$

- Consider $y'' + y = e^t \sin(2t)$
- The RHS is $1e^{1t} \sin(2t)$.
- Since $1 + i^2$ is not a root of $x^2 + 1$, our candidate is of the form

$$Y(t) = t^0 e^{1t} (A_0 \cos(2t) + B_0 \sin(2t)) = e^t (A_0 \cos(2t) + B_0 \sin(2t))$$

• Substituting we find $A_0 = -\frac{1}{5}$ and $B_0 = -\frac{1}{10}$ and we conclude

$$Y(t) = -e^{t}(\frac{1}{5}\cos(2t) + \frac{1}{10}\sin(2t))$$

is a solution to our ODE. What is the general solution?

イロン 不良 とくほう 不良 とうほ

Motivating Examples What's going on? Exercises

The Technique

To solve ay'' + by' + cy = g(t).

- Find fund. set of sol. $\{y_1, y_2\}$ to homogeneous eq.
- Check that g(t) involves only polynomials, exponentials, sines & cosines, and sums & products of the above.
- If $g(t) = g_1(t) + \cdots + g_n(t)$ set up *n* subproblems:

$$ay''+by'+cy=g_j(t),\ j=1,\ldots,n.$$

- The form of g_j and the roots of $ax^2 + bx + c$ determine the form of our candidate solution $Y_i(t)$ to the above.
- **(**) Now solve for Y_j in each subproblem.
- $Y(t) = Y_1(t) + \cdots + Y_n(t)$ and general solution is

$$\phi(t) = Y(t) + c_1 y_1(t) + c_2 y_2(t).$$

<ロ> <四> <四> <四> <三</td>

Motivating Examples What's going on? Exercises

Exercises

Find a solution to the following differential equations

•
$$y'' + 3y' + y = t^3 + 3t + 5;$$

• $y'' + 3y' = t^3 + 3t + 5;$
• $y'' = t^3 + 3t + 5;$

Note: How did the form of your "guess" change in each of the above?

Pind the general solution to

$$2y'' + 3y' + y = t^2 + 3\sin(t).$$

Find the general solution to

$$y'' + 8y' + 16y = e^{-4t}$$
.

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Outline

- Non-homogeneous Linear Equations
- 2 Method of Undetermined Coefficients
 - Motivating Examples
 - What's going on?
 - Exercises
- 3 Variation of Parameters

Applications

- Mechanical Vibration
- Undamped & Damped Free Vibration
- Forced Vibrations

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivating Example

Consider the ODE

$$y^{\prime\prime}-5y^{\prime}+6y=2e^{t}.$$

• $c_1 e^{3t} + c_2 e^{2t}$ solve hom. eq.

• Assume $Y(t) = u_1(t)e^{3t} + u_2(t)e^{2t}$.

Then

$$Y'(t) = 3u_1 e^{3t} + 2u_2 e^{2t}$$

if we assume $u_1' e^{3t} + u_2' e^{2t} = 0$.

- Then $Y'' = 9u_1e^{3t} + 4u_2e^{2t} + 3u'_1e^{3t} + 2u'_2e^{2t}$.
- Substitute to get

$$3u_1'e^{3t}+2u_2'e^{2t}=2e^t.$$

ヘロト 人間 とくほとくほとう

Motivating Example

So we get the system

$$u_1'e^{3t} + u_2'e^{2t} = 0$$

$$3u_1'e^{3t} + 2u_2'e^{2t} = 2e^t$$

Solving we get

$$u'_1(t) = 2e^{-2t}$$
 and $u'_2(t) = -2e^{-t}$.

•
$$u_1(t) = -e^{-2t} + c_1$$
 and $u_2(t) = 2e^{-t} + c_2$.
• $Y(t) = u_1(t)e^{3t} + u_2(t)e^{2t} = e^t + c_1e^{3t} + c_2e^{2t}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

The Method

Theorem (Variation of Parameters)

Let p, q, g be cont. on I and if y_1 and y_2 are a fund. set of sols. to the homogeneous equation

$$y'' + p(t)y' + q(t)y = 0$$

then

$$Y(t) = -y_1(t) \int_{t_0}^t rac{y_2(s)g(s)}{W(y_1,y_2)(s)} ds + y_2(t) \int_{t_0}^t rac{y_1(s)g(s)}{W(y_1,y_2)(s)} ds$$

solves the nonhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t).$$

Use variation of parameters to solve

$$y'' + 2y' + y = 3e^{-t}$$
.

2 Use variation of parameters to solve

$$y^{\prime\prime}+4y=t^2+7.$$

C.J. Sutton Second Order Linear ODEs, Part II

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Outline

- Non-homogeneous Linear Equations
- 2 Method of Undetermined Coefficients
 - Motivating Examples
 - What's going on?
 - Exercises
- 3 Variation of Parameters

Applications

- Mechanical Vibration
- Undamped & Damped Free Vibration
- Forced Vibrations

イロト イポト イヨト イヨト

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System: The Set-up

- Consider a mass *m* hanging from the end of a vertical spring of length *ℓ*.
- The mass causes the spring to stretch *L* units in the downward (positive) direction.
- Two Forces acting on the mass
 - Gravity: +*mg*
 - **2** Restoring Force of spring: $F_s = -kL$ (Hooke's law)
- Spring in equilibrium: mg kL = 0
- Now let *u*(*t*) denote the displacement of the mass from its equilibrium position.

・ロト ・ 理 ト ・ ヨ ト ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System: The Set-up

Newton's law states

$$mu''(t) = F(t),$$

where F(t) is the sum of forces acting on the mass at time t.

- What are the forces acting on the mass?
 - Gravity: mg;
 - 2 Spring Force: $F_s = -k(L + u(t))$ (Hooke's law);
 - 3 Damping Force: $F_d = -\gamma u'(t), \gamma > 0;$
 - An applied external force: $F_e(t)$.

イロト 不得 とくほと くほとう

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System: The Set-up

• So we obtain a 2nd Order linear ODE:

$$mu''(t) = mg + F_s(t) + F_d(t) + F_e(t)$$

= mg - k(L + u(t)) - $\gamma u'(t) + F_e(t)$
= -ku(t) - $\gamma u'(t) + F_e(t)$

since mg - kL = 0.

• By Existence and uniqueness theorem there is a unique solution to the IVP

$$mu''(t) + \gamma u'(t) + ku(t) = F_e(t), \ u(t_0) = u_0, u'(t_0) = v_0.$$

 Physical interpretation of Exist. & Uniqueness: if we do an experiment repeatedly with the exact same initial conditions we will get the same result each time.

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System & Undamped Free Vibration

- Consider a spring-mass system where $\gamma = 0$ and $F_e = 0$.
- Then we get

$$mu''(t)+ku(t)=0.$$

The general solution is

$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t),$$

where $\omega = \frac{k}{m}$.

Can be expressed (using double angle formula) as

$$u(t) = R\cos(\omega_0 t - \delta),$$

where $A = R\cos(\delta)$ and $B = R\sin(\delta)$.

・ロト ・ 理 ト ・ ヨ ト ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System & Undamped Free Vibration

Definition

Consider the spring-mass system with undamped free vibration.

- $\omega_0 = \sqrt{\frac{k}{m}}$ is the **natural frequency** of the vibration (measured in radians per unit time).
- 2 The **period** of the motion is $T = \frac{2\pi}{\omega_0}$. It measures the amount of time between successive peaks of the graph.
- 3 *R* is the **amplitude** of the motion;
- (a) δ is called the **phase**. It measures the displacement of the wave with respect to its usual position.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System & Undamped Free Vibration

Consider the spring-mass system governed by

$$3u'' + 2u = 0.$$

- Find the general solution to the ODE
- 2 express your solution as $u(t) = R \cos(\omega_0 t \delta)$
- Sketch a graph of your solution
- How much time passes between successive maxima?
- Item the second state is the second state of the second state o
- What is the maximum displacement of the mass from equilibrium?
- Oescribe the long-run behavior

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System & Damped Free Vibration

Consider the spring-mass system governed by

$$3u'' + \gamma u' + 2u = 0, \ \gamma > 0$$

- Find the general solutions to this ODE. (there will be three cases).
- What can you say about long-run behavior of these solutions?
- Of the solutions you came up with, which seems closest to periodic.
- Subscript{Subscript{black}} Express this quasi-periodic solution in the form $u(t) = Re^{-\alpha t} \cos(\mu t \delta)$
- Sketch a graph of your solution.

・ロト ・ 理 ト ・ ヨ ト ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System & Damped Free Vibration

Definition

Consider the spring-mass system with damped free vibration: $mu'' + \gamma u' + ku = 0, \ \gamma > 0.$

- $\mu = \frac{\sqrt{4km-\gamma^2}}{2m}$ is the **quasi-frequency** of the vibration (measured in radians per unit time).
- 2 The **quasi-period** of the motion is $T_d = \frac{2\pi}{\mu}$.

イロン 不得 とくほ とくほ とうほ

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Small Damping, Critical Damping & Overdamping

Definition

Consider the spring-mass system with damped free vibration: $mu'' + \gamma u' + ku = 0, \ \gamma > 0.$

• When $0 < \gamma < 2\sqrt{km}$, the solution is of the form:

$$u(t) = Re^{-\gamma t/2m}\cos(\mu t - \delta);$$

2 When $\gamma = 2\sqrt{km}$ this is **critical damping** and the solution is of the form

$$u(t) = (A + tB)e^{-\gamma t/2m}$$

3 When $\gamma > 2\sqrt{km}$ this is called **overdamping** and the solution is of the form

$$u(t) = Ae^{r_1t} + Be^{r_2t}.$$

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Small Damping, Critical Damping & Overdamping

Moral

In each of the cases the solutions die out in the limit. For this reason these solutions are sometimes called **transient solutions**.

C.J. Sutton Second Order Linear ODEs, Part II

ヘロト ヘアト ヘビト ヘビト

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System with Damping & External Force

• We recall that the general spring-mass system is modeled by the ODE

$$mu'' + \gamma u' + ku = F_e(t),$$

where $m, \gamma, k > 0$.

• Suppose $F_e(t) = F_0 \cos(\omega t)$, then the general solution looks like

 $u(t) = A\cos(\omega t) + B\sin(\omega t) + c_1u_1(t) + c_2u_2(t),$

where u_1, u_2 solves the homogeneous equation.

• Let $u_c(t) \equiv c_1 u_1(t) + c_2 u_2(t)$, $U(t) = A \cos(\omega t) + B \sin(\omega t)$.

・ロト ・ 理 ト ・ ヨ ト ・

Mechanical Vibration Undamped & Damped Free Vibration Forced Vibrations

Spring-Mass System with Damping & External Force

• By previous discussion $u_c(t) \equiv c_1 u_1(t) + c_2 u_2(t)$ dies off as $t \to \infty$:

 $\lim_{t\to\infty}|u_c(t)|=0.$

It is transient.

• $U(t) = A\cos(\omega t) + B\sin(\omega t)$ is the steady state solution.

イロト 不得 とくほ とくほ とう