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The Idea

Question
How do we find the general solutions to a non-homogeneous 2nd
order linear ODE

y ′′ + p(t)y ′ + q(t)y = g(t)?

We recall that there is an associated homogeneous equation

y ′′ + p(t)y ′ + q(t)y = 0.
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Theorem
Let Y1(t) and Y2(t) be two solutions to the non-homogeneous
linear equation

y ′′ + p(t)y ′ + q(t)y = g(t), (1.1)

then Y1 − Y2 solves the corresponding homogeneous equation.
Hence, the general solution to Eq. 1.1 is of the form

φ(t) = Y (t) + c1y1(t) + c2y2(t),

where Y is some solution to Eq. 1.1 and y1 and y2 form a
fundamental set of solutions for the corresponding
homogeneous equation.
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So our strategy for solving

y ′′ + p(t)y ′ + q(t)y = g(t)

is:
1 Find some solution Y (t) to the non-homogeneous

equation.
2 Find the general solution c1y1(t) + c2y2(t) of the

associated homogeneous equation.
3 Then Y (t) + c1y1(t) + c2y2(t) is the general solution.
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Motivating Example I

Consider the equation

y ′′ − 5y ′ + 6y = 3 sin(t).

Step 1: Find a solution Y (t)
Since RHS involves trig functions we assume

Y (t) = A cos(t) + B sin(t)

.
Then Y ′(t) = −A sin(t) + B cos(t) and
Y ′′(t) = −A cos(t)− B sin(t).
Substitute to get system:

5A− 5B = 0
5A + 5B = 3

A = 3
10 and B = 3

10 .
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Motivating Example I

Step 2: Fundamental Set
Corresponding homogeneous equation y ′′ − 5y ′ + 6y = 0.
General solution of homog. eq. is

c1e−3t + c2e−2t .

Step 3: General solution non-homog. eq. is given by

φ(t) =
3

10
cos(t) +

3
10

sin(t) + c1e−3t + c2e−2t .
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Motivating Example I

Moral
By taking our lead from the RHS of the equation

y ′′ − 5y ′ + 6y = 3 sin(t)

and assuming Y = A cos(t) + B sin(t) we found the general solution
to our problem.
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Motivating Example II

Consider the equation

y ′′ − 3y ′ − 4y = 3e2t .

Step 1: Find a solution Y (t)
Since RHS involves an exponential assume Y (t) = Ae2t .
Then Y ′(t) = 2Ae2t and Y ′′(t) = 4Ae2t .
Substituting we get −6Ae2t = 3e2t .

Hence, A = −1
2 and

Y (t) = −1
2

e2t .
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Motivating Example II

Step 2: Fundamental Set
Corresponding homogeneous equation y ′′ − 3y ′ − 4y = 0.
General solution of homog. eq. is

c1e−1t + c2e4t .

Step 3: General solution non-homog. eq. is given by

φ(t) = −1
2

e2t + c1e−t + c2e4t .
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Motivating Example II

Moral
By taking our lead from the RHS of the equation

y ′′ − 3y ′ − 4y = 3e2t

and assuming Y = Ae2t we found the general solution to our
problem.
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Motivating Example III

Consider the equation

y ′′ − 3y ′ − 4y = 2e−t .

Step 1: Find a solution Y (t).
Since RHS involves an eponential assume Ỹ (t) = Ae−t .
But Ae−t solves homogeneous equation. Hmm...
Assume Y (t) = Ate−t

Then Y ′(t) = Ae−t − Ate−t and Y ′′(t) = −2Ae−t + Ate−t .
Substituting we get A = −2

5 .

Hence, Y (t) = −2
5 te−t solves our equation.
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Motivating Example III

Step 2: Fundamental Set
Corresponding homogeneous equation y ′′ − 3y ′ − 4y = 0.
General solution o homog. eq. is

c1e−1t + c2e4t .

Step 3: General solution non-homog. eq. is given by

φ(t) = −2
5

te−t + c1e−t + c2e4t .
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Motivating Example IV

Consider the equation

y ′′ + 3y ′ + y = t3 + 3t + 5.

Step 1: Find a solution Y (t).
Since RHS involves a polynomial assume
Y (t) = A3t3 + A2t2 + A1t + A0.
Then Y ′(t) = 3A3t2 + sA2t + A1 and Y ′′(t) = 6A3t + 2A2.
Substituting we conclude

A0 = −130,A1 = 51,A2 = −9,A3 = 1.

Hence, Y (t) = t3 − 9t2 + 51t − 130 solves our equation.

C.J. Sutton Second Order Linear ODEs, Part II



Non-homogeneous Linear Equations
Method of Undetermined Coefficients

Variation of Parameters
Applications

Motivating Examples
What’s going on?
Exercises

Motivating Example IV

Step 2: Fundamental Set
Corresponding homogeneous equation y ′′ + 3y ′ + y = 0.
General solution to homog. eq. is

c1e
−3+
√

5
2 t + c2e

−3−
√

5
2 t .

Step 3: General Solution to non-homog. eq. is given by

φ(t) = t3 − 9t2 + 51t − 130 + c1e
−3+
√

5
2 t + c2e

−3−
√

5
2 t .
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Solving ay ′′ + by ′ + cy = Pn(t)

Let Pn(t) = antn + an−1tn−1 + · · ·+ a1t + a0.
To find a solution of ay ′′ + by ′ + cy = Pn(t), our candidate
is of the form

Y (t) = ts(Antn + An−1tn−1 + · · ·+ A1t + A0),

where s equals the number of times 0 is a root of the
characteristic equation ax2 + bx + c.
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Solving ay ′′ + by ′ + cy = Pn(t)

Consider 3y ′′ − 2y ′ = t + 5
The RHS is a polynomial
Since 0 is a single root of 3x2 − 2x , our candidate is of the
form

Y (t) = t1(A1t + A0) = A1t2 + A0t

Substituting we find A1 = −1
4 and A0 = −13

4 , and we
conclude that

Y (t) = −1
4

t2 − 13
4

t

is a solution to our ODE. What is the general solution?
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Solving ay ′′ + by ′ + cy = Pn(t)eαt

As before, let Pn(t) = antn + an−1tn−1 + · · ·+ a1t + a0

Let α be some real constant.
To solve ay ′′ + by ′ + cy = Pn(t)eαt , our candidate is of the
form

Y (t) = ts(Antn + An−1tn−1 + · · ·+ A1t + A0)eαt ,

where s equals the number of times α is a root of the
characteristic equation ax2 + bx + c.
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Solving ay ′′ + by ′ + cy = Pn(t)eαt

Consider y ′′ − 6y ′ + 9y = e3t

the RHS is 1e3t

Since 3 is a double root of x2 − 6x + 9, our candidate is of
the form

Y (t) = t2A0e3t

Substituting we find A0 = 1
2 and we conclude

Y (t) =
1
2

t2e3t

is a solution to our ODE. What is the general solution?
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Solving ay ′′ + by ′ + cy = Pn(t)eαt cos(βt)

As before, let Pn(t) = antn + an−1tn−1 + · · ·+ a1t + a0

Let α and β be some real constant.
To solve ay ′′ + by ′ + cy = Pn(t)eαt cos(βt), our candidate
is of the form

Y (t) = ts(Antn + An−1tn−1 + · · ·+ A1t + A0)eαt cos(βt)
+ts(Bntn + Bn−1tn−1 + · · ·+ B1t + B0)eαt sin(βt)

where s equals the number of times α+ iβ is a root of the
characteristic equation ax2 + bx + c.
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Solving ay ′′ + by ′ + cy = Pn(t)eαt cos(βt)

Consider y ′′ + 4y = cos(2t)
The RHS is 1e0t cos(2t).
Since 0 + i2 is a single root of x2 + 4, our candidate is of
the form

Y (t) = t1e0t(A0 cos(2t)+B0 sin(2t)) = t(A0 cos(2t)+B0 sin(2t))

Substituting we find A0 = 0 and B0 = 1
4 and we conclude

Y (t) =
1
4

t sin(2t)

is a solution to our ODE. What is the general solution?
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Solving ay ′′ + by ′ + cy = Pn(t)eαt sin(βt)

As before, let Pn(t) = antn + an−1tn−1 + · · ·+ a1t + a0

Let α and β be some real constant.
To solve ay ′′+ by ′+ cy = Pn(t)eαt sin(βt), our candidate is
of the form

Y (t) = ts(Antn + An−1tn−1 + · · ·+ A1t + A0)eαt cos(βt)
+ts(Bntn + Bn−1tn−1 + · · ·+ B1t + B0)eαt sin(βt)

where s equals the number of times α+ iβ is a root of the
characteristic equation ax2 + bx + c.
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Solving ay ′′ + by ′ + cy = Pn(t)eαt sin(βt)

Consider y ′′ + y = et sin(2t)
The RHS is 1e1t sin(2t).
Since 1 + i2 is not a root of x2 + 1, our candidate is of the
form

Y (t) = t0e1t(A0 cos(2t)+B0 sin(2t)) = et(A0 cos(2t)+B0 sin(2t))

Substituting we find A0 = −1
5 and B0 = − 1

10 and we
conclude

Y (t) = −et(
1
5

cos(2t) +
1
10

sin(2t))

is a solution to our ODE. What is the general solution?
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The Technique

To solve ay ′′ + by ′ + cy = g(t).
1 Find fund. set of sol. {y1, y2} to homogeneous eq.
2 Check that g(t) involves only polynomials, exponentials,

sines & cosines, and sums & products of the above.
3 If g(t) = g1(t) + · · ·+ gn(t) set up n subproblems:

ay ′′ + by ′ + cy = gj(t), j = 1, . . . ,n.

4 The form of gj and the roots of ax2 + bx + c determine the
form of our candidate solution Yj(t) to the above.

5 Now solve for Yj in each subproblem.
6 Y (t) = Y1(t) + · · ·+ Yn(t) and general solution is

φ(t) = Y (t) + c1y1(t) + c2y2(t).

C.J. Sutton Second Order Linear ODEs, Part II



Non-homogeneous Linear Equations
Method of Undetermined Coefficients

Variation of Parameters
Applications

Motivating Examples
What’s going on?
Exercises

Exercises

1 Find a solution to the following differential equations
1 y ′′ + 3y ′ + y = t3 + 3t + 5;
2 y ′′ + 3y ′ = t3 + 3t + 5;
3 y ′′ = t3 + 3t + 5;

Note: How did the form of your “guess” change in each of
the above?

2 Find the general solution to

2y ′′ + 3y ′ + y = t2 + 3 sin(t).

3 Find the general solution to

y ′′ + 8y ′ + 16y = e−4t .
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Consider the ODE

y ′′ − 5y ′ + 6y = 2et .

c1e3t + c2e2t solve hom. eq.
Assume Y (t) = u1(t)e3t + u2(t)e2t .
Then

Y ′(t) = 3u1e3t + 2u2e2t

if we assume u′1e3t + u′2e2t = 0.
Then Y ′′ = 9u1e3t + 4u2e2t + 3u′1e3t + 2u′2e2t .
Substitute to get

3u′1e3t + 2u′2e2t = 2et .
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So we get the system

u′1e3t + u′2e2t = 0
3u′1e3t + 2u′2e2t = 2et

Solving we get

u′1(t) = 2e−2t and u′2(t) = −2e−t .

u1(t) = −e−2t + c1 and u2(t) = 2e−t + c2.
Y (t) = u1(t)e3t + u2(t)e2t = et + c1e3t + c2e2t .
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The Method

Theorem (Variation of Parameters)
Let p,q,g be cont. on I and if y1 and y2 are a fund. set of sols.
to the homogeneous equation

y ′′ + p(t)y ′ + q(t)y = 0

then

Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds

solves the nonhomogeneous equation

y ′′ + p(t)y ′ + q(t)y = g(t).

C.J. Sutton Second Order Linear ODEs, Part II



Non-homogeneous Linear Equations
Method of Undetermined Coefficients

Variation of Parameters
Applications
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1 Use variation of parameters to solve

y ′′ + 2y ′ + y = 3e−t .

2 Use variation of parameters to solve

y ′′ + 4y = t2 + 7.
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Spring-Mass System: The Set-up

Consider a mass m hanging from the end of a vertical
spring of length `.
The mass causes the spring to stretch L units in the
downward (positive) direction.
Two Forces acting on the mass

1 Gravity: +mg
2 Restoring Force of spring: Fs = −kL (Hooke’s law)

Spring in equilibrium: mg − kL = 0
Now let u(t) denote the displacement of the mass from its
equilibrium position.
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Spring-Mass System: The Set-up

Newton’s law states

mu′′(t) = F (t),

where F (t) is the sum of forces acting on the mass at time
t .
What are the forces acting on the mass?

1 Gravity: mg;
2 Spring Force: Fs = −k(L + u(t)) (Hooke’s law);
3 Damping Force: Fd = −γu′(t), γ > 0;
4 An applied external force: Fe(t).
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Spring-Mass System: The Set-up

So we obtain a 2nd Order linear ODE:

mu′′(t) = mg + Fs(t) + Fd(t) + Fe(t)
= mg − k(L + u(t))− γu′(t) + Fe(t)
= −ku(t)− γu′(t) + Fe(t)

since mg − kL = 0.
By Existence and uniqueness theorem there is a unique
solution to the IVP

mu′′(t) + γu′(t) + ku(t) = Fe(t), u(t0) = u0,u′(t0) = v0.

Physical interpretation of Exist. & Uniqueness: if we do an
experiment repeatedly with the exact same initial
conditions we will get the same result each time.
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Spring-Mass System & Undamped Free Vibration

Consider a spring-mass system where γ = 0 and Fe = 0.
Then we get

mu′′(t) + ku(t) = 0.

The general solution is

u(t) = A cos(ω0t) + B sin(ω0t),

where ω = k
m .

Can be expressed (using double angle formula) as

u(t) = R cos(ω0t − δ),

where A = R cos(δ) and B = R sin(δ).

C.J. Sutton Second Order Linear ODEs, Part II



Non-homogeneous Linear Equations
Method of Undetermined Coefficients

Variation of Parameters
Applications

Mechanical Vibration
Undamped & Damped Free Vibration
Forced Vibrations

Spring-Mass System & Undamped Free Vibration

Definition
Consider the spring-mass system with undamped free vibration.

1 ω0 =
√

k
m is the natural frequency of the vibration (measured

in radians per unit time).
2 The period of the motion is T = 2π

ω0
. It measures the amount of

time between successive peaks of the graph.
3 R is the amplitude of the motion;
4 δ is called the phase. It measures the displacement of the wave

with respect to its usual position.
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Spring-Mass System & Undamped Free Vibration

Consider the spring-mass system governed by

3u′′ + 2u = 0.

1 Find the general solution to the ODE
2 express your solution as u(t) = R cos(ω0t − δ)
3 Sketch a graph of your solution
4 How much time passes between successive maxima?
5 How many radians are swept out in this period?
6 What is the maximum displacement of the mass from

equilibrium?
7 Describe the long-run behavior
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Spring-Mass System & Damped Free Vibration

Consider the spring-mass system governed by

3u′′ + γu′ + 2u = 0, γ > 0

1 Find the general solutions to this ODE. (there will be three
cases).

2 What can you say about long-run behavior of these
solutions?

3 Of the solutions you came up with, which seems closest to
periodic.

4 Express this quasi-periodic solution in the form
u(t) = Re−αt cos(µt − δ)

5 Sketch a graph of your solution.

C.J. Sutton Second Order Linear ODEs, Part II



Non-homogeneous Linear Equations
Method of Undetermined Coefficients

Variation of Parameters
Applications

Mechanical Vibration
Undamped & Damped Free Vibration
Forced Vibrations

Spring-Mass System & Damped Free Vibration

Definition
Consider the spring-mass system with damped free vibration:
mu′′ + γu′ + ku = 0, γ > 0.

1 µ =

√
4km−γ2

2m is the quasi-frequency of the vibration
(measured in radians per unit time).

2 The quasi-period of the motion is Td = 2π
µ .
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Small Damping, Critical Damping & Overdamping

Definition
Consider the spring-mass system with damped free vibration:
mu′′ + γu′ + ku = 0, γ > 0.

1 When 0 < γ < 2
√

km, the solution is of the form:

u(t) = Re−γt/2m cos(µt − δ);

2 When γ = 2
√

km this is critical damping and the solution is
of the form

u(t) = (A + tB)e−γt/2m.

3 When γ > 2
√

km this is called overdamping and the solution
is of the form

u(t) = Aer1t + Ber2t .
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Small Damping, Critical Damping & Overdamping

Moral
In each of the cases the solutions die out in the limit. For this reason
these solutions are sometimes called transient solutions.
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Spring-Mass System with Damping & External Force

We recall that the general spring-mass system is modeled
by the ODE

mu′′ + γu′ + ku = Fe(t),

where m, γ, k > 0.
Suppose Fe(t) = F0 cos(ωt), then the general solution
looks like

u(t) = A cos(ωt) + B sin(ωt) + c1u1(t) + c2u2(t),

where u1,u2 solves the homogeneous equation.
Let uc(t) ≡ c1u1(t) + c2u2(t), U(t) = A cos(ωt) + B sin(ωt).
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By previous discussion uc(t) ≡ c1u1(t) + c2u2(t) dies off as
t →∞:

lim
t→∞
|uc(t)| = 0.

It is transient.
U(t) = A cos(ωt) + B sin(ωt) is the steady state solution.
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