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The Definition

A second order ODE has the form
a2y
— =f(t,y
dt (t,

ady P,y
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Second Order Equations
Overview

The Definition

Definition
A second order ODE has the form
d?y dy
——f
dt (t.y " at o)

A second order linear ODE has the form

y'+p)y +q(t)y =g(t)

or
R(t)y" + P(t)y' + Q(t)y = G(1).
We’ll say the equation is homogeneous if g(t) = 0 or G(t) =
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Second Order Equations
Overview

A Second Order ODE Example: the Vibrating Spring

@ Consider a spring with spring constant k and a block of
mass m attached to the end.

@ Let x(t) denote the displacement of the block-spring
system from the spring-mass equilibrium.

@ x(t) is governed by the 2nd order linear ODE
mx" = —kx + mg.
@ Getting fancy we obtain
mx" = —kx + mg + D(x") + F(t),

where D is the damping force and F(t) is the external
force.
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Second Order Equations
Overview

Linearity

If y1(t) and y»(t) solve the homogeneous 2nd order linear ODE
y"+p(t)y' +q(t)y =0

then for any ¢; and ¢, the function
o(t) = c1y1(t) + caya(t)

solves the ODE.
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Second Order Equations

Overview

Initial Value Problems

A second order linear IVP consists of a 2nd order linear ODE
y'+p()y +q(t)y = 9(t) (1.1)
and initial conditions

y(to) = ¥o and y'(f) = ¥p.

Note: There is no general solution method for 2nd order linear
ODEs, but we do have an existence and uniqueness theorem.
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Second Order Equations
Overview

Existence & Uniqueness

Consider the IVP
Y+ p)y +q(t)yy = g(t), y(bo) = yo,Y () =¥y,  (1.2)

where p, q and g are continuous on some open interval |
containing ty. Then there is exactly one solution y = ¢(t) of
Eq. 1.2 and it is defined and at least twice differentiable
throughout the interval |I.

If p, g and g are continuous, then a solution ¢(t) to the second order
linear ODE is uniquely determined by the initial data: ¢(f) and

/
¢'(to).
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Second Order Equations
Overview

Exercises

@ Find the longest interval on which a solution to the IVP
(B+70y" + (B +t)y = (t+3)y =0, y(2) = -7,y'(2) = 1,

is guaranteed to exist.
© Find a solution to the IVP

Y +pt)y +q(t)y =0, y(t) =0,y'(t) =0,

where p and g are continuous on an open interval /
containing ty. Is it unique?
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Overview
Theory of Homogeneous Linear ODEs Motivating Examples
The Wronskian & the Existence of Solutions

Game Plan

@ Consider 2nd order homogeneous linear ODE

y"+p(t)y' +a(t)y =0,
@ We will see that the solutions will come in a 2D-family
ciyi(t) + caya(t)
where ¢; and ¢, are constants.
@ Find a solution V() to the non-homogeneous equation
y'+p(t)y' +q(t)y = 9(t).
@ Then all solutions to y” 4+ p(t)y’ + q(t)y = g(t) will be of
the form
\U(t) + c1y1(t) + ngg(t),
where ¢y and ¢, are arbitrary constants (determined by
initial conditions).
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The Wronskian & the Existence of Solutions

Game Plan

@ We will restrict our attention to constant coeff. equations:
ay” + by’ +cy = g(1)

@ In the third part of these notes we will see that you can
always find explicit solutions to the associated
homogeneous problem

ay’ +by' +cy=0

@ Method of Undetermined Coefficients and Variation of
Parameters will help with the non-homogeneous problem.

Analyze the homogeneous case before tackling the general case.
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The Wronskian & the Existence of Solutions

Example 1

@ Consider the IVP

y'—y=0,y(0)=1,y(0)=2. (2.1)

@ yi(t) = e' and y»(t) = e~ ! are distinct solutions to the
homogeneous ODE y” — y = 0.

@ Infact, ¢(t) = cye! + coe~! solves the ODE for any choice

of ¢y and co.

@ Can we choose ¢y and ¢, such that ¢(0) = 1 and
¢'(0) = 2?

@ Yes, take ¢y = 3 and ¢, = —3%

@ Then ¢(t) = 3e! — Je~! solves our IVP.
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Theory of Homogeneous Linear ODEs Motivating Examples
The Wronskian & the Existence of Solutions

Example 1 (cont'd)

@ Consider the IVP
y'—y =0, y(0) = a,y'(0) = b. (2:2)
@ Can we choose ¢; and ¢, such that
(1) = cre' + cre!

solves the IVP?
@ Yes, take ¢; = 22 and ¢, = &5
@ So, any solution to our ODE is of the form

ciel + coe ! (why?)

That is, we have a two-dimensional family of solutions.

C.J. Sutton Second Order Linear ODEs, Part |



Overview
Theory of Homogeneous Linear ODEs Motivating Examples
The Wronskian & the Existence of Solutions

Example 2

@ Consider the IVP
y" =2y’ =385y =0, y(0) =1,y'(0) = 2. (2.3)

@ yi(t) = e "t and y,(t) = €% are distinct solutions to the
homogeneous ODE y” — 2y’ — 35y = 0.

@ Infact, ¢(t) = cie~ " + €% solves the ODE for any
choice of ¢ and ¢,.

@ Can we choose ¢y and ¢, such that ¢(0) = 1 and
#(0) =27

@ Yes,take ¢y = J and ¢, = 2

@ Then ¢(t) = e~ "' + 3&% solves our IVP,
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Example 2 (cont'd)

@ Consider the IVP
y" -2y’ —35y =0, y(0) = a,y'(0) = b. (2.4)
@ Can we choose ¢; and ¢, such that
o(t) = cre™" + cre™

solves the IVP?
_ 5a-b _ 7a+b
@ Yes, take ¢y = 93~ and ¢, = 33

@ So any solution to our ODE is of the form

cre "t + €% (why?)

That is, we have a two-dimensional family of solutions.
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Overview
Theory of Homogeneous Linear ODEs Motivating Examples

The Wronskian & the Existence of Solutions

In each of the previous examples we were able to find two
solutions y; and y» of our ODE such that the matrix

( yi(to)  yo(to) >
yi(to) ya(to)

is invertible (i.e., has non-zero determinant).
We could then express any solution to the ODE as a linear
combination

o(t) = cry1(t) + coya(t).

Does this work for a general 2nd order linear homogeneous ODE?
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The Wronskian & the Existence of Solutions

Linear Independence

Definition

Let f and g be two functions defined on some open interval

I:a < t< (. We will say that f and g are linearly dependent on
the interval / if there are constants ¢; and ¢, (not both zero) such that

cif(t) + cog(t) =0

for all £ in the interval /. That is, one of the functions is a scalar
multiple of the other. Otherwise, we say that the functions are
linearly independent on the interval /.
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Theory of Homogeneous Linear ODEs Motivating Examples
The Wronskian & the Existence of Solutions

Linear Independence: some Examples

@ f(t) = 2 + 2t and g(t) = 0 are linearly dependent on
—o00 < t < o0.

@ f(t) = 2 + 2t and g(t) = —9t2 — 18t are linearly dependent
on —oo < t < o0.

© f(t) = cos(t) and g(t) = sin(t) are linearly independent on
—00 < t < o0.

Q f(t) = } and g(t) = sin(t) are linearly independent on
0<t<+o0.
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The Wronskian

Definition

Let f and g be two functions defined on some open interval

I:a <t < (. The Wronskian of f and g denoted W(f, g)(t) is the
function on / defined by

wir.a)(t) =cet( 1) S0 ) =g - rgte)

The Wronskian provides a test for linear independence...
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The Wronskian & Linear Independence

Let f and g be differentiable functions on some interval I. If
W(f,g)(ty) # O for some ty in I, then f and g are linearly
independent.
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The Wronskian & the Existence of Solutions

Fundamental Sets & the Wronskian

Two solutions y1(t) and y»(t) of the 2nd order linear ODE

Y'+p)y +q(t)y =0, a <t<p,

are said to form a fundamental set of solutions (on the interval)
if there is a number o < fy < ( such that

W(y1, y2)(t) # 0. )

Does a fundamental set of solutions always exist?
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Fundamental Sets & the Wronskian

What’s so special about fundamental sets of solutions?

We will see that a fundamental sets of solutions {y4, y»} to a
2nd Order linear homogeneous ODE on an interval / generate
all solutions to the ODE on /.
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The Wronskian & the Existence of Solutions

The Wronskian & Linear Independence

Theorem (3.2.6, Abel’s Theorem)

If y1 and y» are solutions to the 2nd order ODE

y" + p(t)y’ + q(t)y =0, where p and q are continuous on I,
then

W(y1.y2)(t) = cexp (~ / p(t) ab)

where c is a constant that only depends on y; and y». So,
W(y1, y2)(t) is zero everywhere on | or never zero.
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The Wronskian & Fundamental Sets of Solutions

Suppose that y1(t) and y»(t) are solutions to the Linear ODE

y"+p(t)y' + q(t)y =0.

Now suppose
@ p and q are continuous at t
Q W(y1,y2)(t) #0 (i.e., y; and y» are lin. indep.)

Then there exist unique constants ¢y and ¢, such that
o(t) = ciy1(t) + coy(t) satisfies the IVP

y"+p(t)y +q(t)y =0, y(t) = Yo, (k) = Yo.

That is {y1, y»} forms a fundamental set of solutions.
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The Wronskian & Fundamental Sets of Solutions

Moral

If {y1(t), y2(t)} is a fundamental set of solutions to the 2nd Order
Linear Homogeneous ODE

y"+p(t)y +q(t)y =0

on the interval /. Then every solution to this ODE on / can be
expressed as
c1y(t) + caya(t)

for some unique choice of real numbers ¢y and Co.
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Theory of Homogeneous Linear ODEs Motivating Examples
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Existence of Fundamental Sets

Theorem (3.2.5)
Consider the 2nd order linear ODE

y"+p(t)y +q(t)y =0,

where p and q are continuous on some interval I. Choose a
point ty in I. Let y1(t) be the solution to the ODE with initial data
y1(lo) =1 and y{ (%) = 0, and let y»(t) be the solution to the
ODE with initial data y>(fy) = 0 and y»(ty) = 1. Then y;(t) and
Vo(t) form a fundamental set of solutions for the ODE on the
interval |.
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The Wronskian & the Existence of Solutions

All of the Solutions

Let W(t) be some solution to the 2nd order linear ODE

y'+p(t)y +q(t)y =g(t), a <t <p,

where p and q are continuous. Let {y1(t), y=(t)} be a
fundamental set of solutions to the associated homogeneous
equation. Then all solutions to our ODE on the interval

a < t < [ are of the form

V(1) + cryi(t) + caya(l),

where ¢; and ¢, are constants.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

The Idea

We showed {y;(t) = €, yo(t) = e~} is a fundamental set of
solutions for y” — y = 0. How did we get these solutions?
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

The Idea

We showed {yi(t) = €', yo(t) = e~ !} is a fundamental set of
solutions for y” — y = 0. How did we get these solutions?
@ Assume solution looks like y(t) = e.
@ Then y(t) solves equation if and only if 2 — 1 = 0. Why?
@ Hence, y(t) solves ODE if and only if r = +1.
@ So e' and e~ are solutions.
e W(el, e t)(t) # 0 implies fundamental set.

Moral: We reduced solving this const. coeff. equation to
finding roots of a quadratic.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

In General

Consider that 2nd order homogeneous linear ODE

ay” + by’ +cy =0.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

In General

Consider that 2nd order homogeneous linear ODE

ay” + by’ +cy =0.

@ Assume solution looks like y(t) = e".
@ Then y(t) solves equation if and only if ar? + br + ¢ = 0.
o Let A = b? - 4ac.

@ There are three cases for the roots ry and r» of the
characteristic equation.
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Solving 2nd Order Linear Homogeneous ODEs

In General

Consider that 2nd order homogeneous linear ODE

ay” + by’ +cy =0.

@ Assume solution looks like y(t) = e".
@ Then y(t) solves equation if and only if ar? + br + ¢ = 0.
o Let A = b? - 4ac.

@ There are three cases for the roots ry and r» of the
characteristic equation.

@ r #narereal (i.e., A > 0).
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Solving 2nd Order Linear Homogeneous ODEs

In General

Consider that 2nd order homogeneous linear ODE

ay” + by’ +cy =0.

@ Assume solution looks like y(t) = e".
@ Then y(t) solves equation if and only if ar? + br + ¢ = 0.
@ Let A = b? — 4ac.
@ There are three cases for the roots ry and r, of the
characteristic equation.
@ r #narereal (i.e., A > 0).
Q@ rn=v+tipn=v—iu,whereu#0(ie., A <D0).
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

In General

Consider that 2nd order homogeneous linear ODE

ay” + by’ +cy =0.

@ Assume solution looks like y(t) = e".
@ Then y(t) solves equation if and only if ar? + br + ¢ = 0.
o Let A = b? - 4ac.

@ There are three cases for the roots ry and r» of the
characteristic equation.
@ r #narereal (i.e., A > 0).
Q@ rn=v+tipn=v—iu,whereu#0(ie., A <D0).
© r, = real numbers (i.e., A = 0).
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case 1: A >0 ( )

Solving 2nd Order Linear Homogeneous ODEs

@ ry # ry real roots
@ yi(t) = et and y»(t) = e! solve

ay” + by +cy =0.

° Wi(ys,y2)(t) #0
@ So {y(t), y=(t)} forms a fundamental set of solutions

@ o(t) = c1y1(t) + coyo(t) is the general solution.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case 1: A >0 ( )

Solving 2nd Order Linear Homogeneous ODEs

Solve the following IVPs

Q y"+9y'+20y =0, y(1) =3,y'(1) = 0.
Q 2y"—20y' +42y =0, y(2) = 3y(2):
Q 3y +12y/ +9y =0, y(—1)=9,y/(-1) =
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case2: A <0 ( )

Solving 2nd Order Linear Homogeneous ODEs

First we recall a few things
o i=+v—-1
Z =v + ipis a complex number
(Euler's Formula) e = cos(t) + isin(t)
grtin = gveltt = g”(cos(u) + isin(p))
If zand w are complex numbers then " = eZe".
y(t) = e#, then y/(t) = ze*.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case2: A <0 ( )

Solving 2nd Order Linear Homogeneous ODEs

Now since A < 0 we have:
@ rp=v+ipand rn =v—iywith u # 0.
@ (1) = et and j»(t) = e! solve

ay” + by +cy =0.

° W(j,y)(t)#0
@ So {y1(t), y=(t)} forms a fundamental set of solutions
@ But y; and j» are not real-valued functions.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case2: A <0 ( )

Solving 2nd Order Linear Homogeneous ODEs

However
@ yi(t) = 31 (1) + 57(t) = € cos(ut)
© ya(t) = Zi(t) — 3 7(t) = €' sin(ut)
are real-valued solutions. In fact,

W(ys, y2)(t) # 0.

Hence, {e"! cos(ut), €' sin(ut)} is a fundamental set of
solutions.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Case2: A <0 ( )

Solving 2nd Order Linear Homogeneous ODEs

Solve the following IVPs:
Q@ y'+16y =0, y(r/2) =1,y'(7/2) = 0.
Q 2y +2y+y=0, y(0)=1,y'(0) = 3.
©Q 3y"+4y' +3y =0, y(—n/4) =3,y'(-n/4) = 2.
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

Case 3: A =0 (

®r=r=-2arereal

@ y;(t) = et is a solution, but we need another.
@ Suppose y(t) = v(t)y; = v(t)e P/?2 s a solution.
@ Then

}/é(f) _ V/(t)e—bt/Za o 2bav(t)e—bt/23

and

2
YU(t) = v'(Bebt/2a Zvl(t)e—bt/23+ biv(t)e—bt/Za'

4a2
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Homogeneous Constant Coefficient
Positive Discriminant

Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

Case 3: A =0 (

@ Use the differential Eqg. to see
v'(t) = 0.

@ Hence v(t) = cit+ ¢

@ y(t) = cite /28 e bl/2a,

° W(e—bl‘/Za7 te—bt/Za)(t) — g—bt/2a

@ Hence, {e?/?2 tg=bt/2a} forms a fundamental set of
solutions our ODE.

@ This is an example of the method of Reduction of Order
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Homogeneous Constant Coefficient
Positive Discriminant
Solving 2nd Order Linear Homogeneous ODEs

Negative Discriminant

Zero Discriminant (
Case 3: A =0 (

Solve the following IVPs:
Q@ )y -y +025y =0, y(0) =
Q 2y +8y'+8y=0, y(1)=

y'(0) = 3.
Q@ y -6y +9y=0, y(-2)=

3y(1) Z
3y/(-2)=3
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Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

Case 3: A =0 (

Here’s another way to find the fundamental set of solutions in
this case:

° LetL—a +b +candassumear2+br+c—0hasa
repeated root r.
@ Then
L(e") = a(r —r)%e"
it equals zero if and only if r = ry.
@ So, as before, y;(t) = e"! is a solution.
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Negative Discriminant

Zero Discriminant

Solving 2nd Order Linear Homogeneous ODEs

Case 3: A =0 (
@ Now
gL(e”) = L(éer’) = L(te") = ate"!(r—r)2+2ae"(r—ny)
or or '

@ Conclude that te! is a solution to L(y) = 0.
@ So, y;(t) = e"t and y»(t) = te"! are solutions.

@ As before, by computing the Wronskian, we see they form
a fundamental set of solutions.

@ See Problems 3.4.20 & 3.4.21 for additional ways of seeing
this.
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