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The Definition

Definition
A second order ODE has the form

d2y
dt

= f (t , y ,
dy
dt

).

A second order linear ODE has the form

y ′′ + p(t)y ′ + q(t)y = g(t)

or
R(t)y ′′ + P(t)y ′ + Q(t)y = G(t).

We’ll say the equation is homogeneous if g(t) = 0 or G(t) = 0.
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A Second Order ODE Example: the Vibrating Spring

Consider a spring with spring constant k and a block of
mass m attached to the end.
Let x(t) denote the displacement of the block-spring
system from the spring-mass equilibrium.
x(t) is governed by the 2nd order linear ODE

mx ′′ = −kx + mg.

Getting fancy we obtain

mx ′′ = −kx + mg + D(x ′) + F (t),

where D is the damping force and F (t) is the external
force.
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Linearity

If y1(t) and y2(t) solve the homogeneous 2nd order linear ODE

y ′′ + p(t)y ′ + q(t)y = 0

then for any c1 and c2 the function

φ(t) = c1y1(t) + c2y2(t)

solves the ODE.
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Initial Value Problems

Definition
A second order linear IVP consists of a 2nd order linear ODE

y ′′ + p(t)y ′ + q(t)y = g(t) (1.1)

and initial conditions

y(t0) = y0 and y ′(t0) = y ′0.

Note: There is no general solution method for 2nd order linear
ODEs, but we do have an existence and uniqueness theorem.
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Existence & Uniqueness

Theorem
Consider the IVP

y ′′ + p(t)y ′ + q(t)y = g(t), y(t0) = y0, y ′(t0) = y ′0, (1.2)

where p,q and g are continuous on some open interval I
containing t0. Then there is exactly one solution y = φ(t) of
Eq. 1.2 and it is defined and at least twice differentiable
throughout the interval I.

Moral
If p,q and g are continuous, then a solution φ(t) to the second order
linear ODE is uniquely determined by the initial data: φ(t0) and
φ′(t0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs
Overview

Exercises

1 Find the longest interval on which a solution to the IVP

(t2 + 7t)y ′′+ (t3 + t)y ′− (t + 3)y = 0, y(2) = −7, y ′(2) = 1,

is guaranteed to exist.
2 Find a solution to the IVP

y ′′ + p(t)y ′ + q(t)y = 0, y(t0) = 0, y ′(t0) = 0,

where p and q are continuous on an open interval I
containing t0. Is it unique?
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Game Plan

Consider 2nd order homogeneous linear ODE

y ′′ + p(t)y ′ + q(t)y = 0,

We will see that the solutions will come in a 2D-family

c1y1(t) + c2y2(t)

where c1 and c2 are constants.
Find a solution Ψ(t) to the non-homogeneous equation

y ′′ + p(t)y ′ + q(t)y = g(t).

Then all solutions to y ′′ + p(t)y ′ + q(t)y = g(t) will be of
the form

Ψ(t) + c1y1(t) + c2y2(t),

where c1 and c2 are arbitrary constants (determined by
initial conditions).
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Game Plan

We will restrict our attention to constant coeff. equations:

ay ′′ + by ′ + cy = g(t)

In the third part of these notes we will see that you can
always find explicit solutions to the associated
homogeneous problem

ay ′′ + by ′ + cy = 0

Method of Undetermined Coefficients and Variation of
Parameters will help with the non-homogeneous problem.

Moral
Analyze the homogeneous case before tackling the general case.
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Example 1

Consider the IVP

y ′′ − y = 0, y(0) = 1, y ′(0) = 2. (2.1)

y1(t) = et and y2(t) = e−t are distinct solutions to the
homogeneous ODE y ′′ − y = 0.
In fact, φ(t) = c1et + c2e−t solves the ODE for any choice
of c1 and c2.
Can we choose c1 and c2 such that φ(0) = 1 and
φ′(0) = 2?
Yes, take c1 = 3

2 and c2 = −1
2

Then φ(t) = 3
2et − 1

2e−t solves our IVP.
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Example 1 (cont’d)

Consider the IVP

y ′′ − y = 0, y(0) = a, y ′(0) = b. (2.2)

Can we choose c1 and c2 such that

φ(t) = c1et + c2e−t

solves the IVP?
Yes, take c1 = a+b

2 and c2 = a−b
2

So, any solution to our ODE is of the form

c1et + c2e−t (why?)

That is, we have a two-dimensional family of solutions.
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Example 2

Consider the IVP

y ′′ − 2y ′ − 35y = 0, y(0) = 1, y ′(0) = 2. (2.3)

y1(t) = e−7t and y2(t) = e5t are distinct solutions to the
homogeneous ODE y ′′ − 2y ′ − 35y = 0.
In fact, φ(t) = c1e−7t + c2e5t solves the ODE for any
choice of c1 and c2.
Can we choose c1 and c2 such that φ(0) = 1 and
φ′(0) = 2?
Yes, take c1 = 1

4 and c2 = 3
4

Then φ(t) = 1
4e−7t + 3

4e5t solves our IVP.
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Example 2 (cont’d)

Consider the IVP

y ′′ − 2y ′ − 35y = 0, y(0) = a, y ′(0) = b. (2.4)

Can we choose c1 and c2 such that

φ(t) = c1e−7t + c2e5t

solves the IVP?
Yes, take c1 = 5a−b

12 and c2 = 7a+b
12

So any solution to our ODE is of the form

c1e−7t + c2e5t (why?)

That is, we have a two-dimensional family of solutions.
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Moral

In each of the previous examples we were able to find two
solutions y1 and y2 of our ODE such that the matrix(

y1(t0) y2(t0)
y ′1(t0) y ′2(t0)

)
is invertible (i.e., has non-zero determinant).
We could then express any solution to the ODE as a linear
combination

φ(t) = c1y1(t) + c2y2(t).

Question
Does this work for a general 2nd order linear homogeneous ODE?
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Linear Independence

Definition
Let f and g be two functions defined on some open interval
I : α < t < β. We will say that f and g are linearly dependent on
the interval I if there are constants c1 and c2 (not both zero) such that

c1f (t) + c2g(t) = 0

for all t in the interval I. That is, one of the functions is a scalar
multiple of the other. Otherwise, we say that the functions are
linearly independent on the interval I.
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Linear Independence: some Examples

1 f (t) = t2 + 2t and g(t) = 0 are linearly dependent on
−∞ < t <∞.

2 f (t) = t2 + 2t and g(t) = −9t2 − 18t are linearly dependent
on −∞ < t <∞.

3 f (t) = cos(t) and g(t) = sin(t) are linearly independent on
−∞ < t <∞.

4 f (t) = 1
t and g(t) = sin(t) are linearly independent on

0 < t < +∞.
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The Wronskian

Definition
Let f and g be two functions defined on some open interval
I : α < t < β. The Wronskian of f and g denoted W (f ,g)(t) is the
function on I defined by

W (f ,g)(t) = det
(

f (t) g(t)
f ′(t) g′(t)

)
= f (t)g′(t)− f ′(t)g(t).

The Wronskian provides a test for linear independence...
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The Wronskian & Linear Independence

Theorem
Let f and g be differentiable functions on some interval I. If
W (f ,g)(t0) 6= 0 for some t0 in I, then f and g are linearly
independent.
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Fundamental Sets & the Wronskian

Definition
Two solutions y1(t) and y2(t) of the 2nd order linear ODE

y ′′ + p(t)y ′ + q(t)y = 0, α < t < β,

are said to form a fundamental set of solutions (on the interval)
if there is a number α < t0 < β such that

W (y1, y2)(t0) 6= 0.

Question
Does a fundamental set of solutions always exist?
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Fundamental Sets & the Wronskian

Question
What’s so special about fundamental sets of solutions?

We will see that a fundamental sets of solutions {y1, y2} to a
2nd Order linear homogeneous ODE on an interval I generate
all solutions to the ODE on I.
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The Wronskian & Linear Independence

Theorem (3.2.6, Abel’s Theorem)
If y1 and y2 are solutions to the 2nd order ODE
y ′′ + p(t)y ′ + q(t)y = 0, where p and q are continuous on I,
then

W (y1, y2)(t) = c exp (−
∫

p(t) dt),

where c is a constant that only depends on y1 and y2. So,
W (y1, y2)(t) is zero everywhere on I or never zero.
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The Wronskian & Fundamental Sets of Solutions

Theorem
Suppose that y1(t) and y2(t) are solutions to the Linear ODE

y ′′ + p(t)y ′ + q(t)y = 0.

Now suppose
1 p and q are continuous at t0
2 W (y1, y2)(t0) 6= 0 (i.e., y1 and y2 are lin. indep.)

Then there exist unique constants c1 and c2 such that
φ(t) = c1y1(t) + c2y2(t) satisfies the IVP

y ′′ + p(t)y ′ + q(t)y = 0, y(t0) = y0, y ′(t0) = y ′0.

That is {y1, y2} forms a fundamental set of solutions.
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The Wronskian & Fundamental Sets of Solutions

Moral
If {y1(t), y2(t)} is a fundamental set of solutions to the 2nd Order
Linear Homogeneous ODE

y ′′ + p(t)y ′ + q(t)y = 0

on the interval I. Then every solution to this ODE on I can be
expressed as

c1y1(t) + c2y2(t)

for some unique choice of real numbers c1 and c2.
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Existence of Fundamental Sets

Theorem (3.2.5)
Consider the 2nd order linear ODE

y ′′ + p(t)y ′ + q(t)y = 0,

where p and q are continuous on some interval I. Choose a
point t0 in I. Let y1(t) be the solution to the ODE with initial data
y1(t0) = 1 and y ′1(t0) = 0, and let y2(t) be the solution to the
ODE with initial data y2(t0) = 0 and y2(t0) = 1. Then y1(t) and
y2(t) form a fundamental set of solutions for the ODE on the
interval I.
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All of the Solutions

Theorem
Let Ψ(t) be some solution to the 2nd order linear ODE

y ′′ + p(t)y ′ + q(t)y = g(t), α < t < β,

where p and q are continuous. Let {y1(t), y2(t)} be a
fundamental set of solutions to the associated homogeneous
equation. Then all solutions to our ODE on the interval
α < t < β are of the form

Ψ(t) + c1y1(t) + c2y2(t),

where c1 and c2 are constants.
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The Idea

We showed {y1(t) = et , y2(t) = e−t} is a fundamental set of
solutions for y ′′ − y = 0. How did we get these solutions?

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if r2 − 1 = 0. Why?
Hence, y(t) solves ODE if and only if r = ±1.
So et and e−t are solutions.
W (et ,e−t )(t) 6= 0 implies fundamental set.

Moral: We reduced solving this const. coeff. equation to
finding roots of a quadratic.
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In General

Consider that 2nd order homogeneous linear ODE

ay ′′ + by ′ + cy = 0.

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if ar2 + br + c = 0.
Let ∆ = b2 − 4ac.
There are three cases for the roots r1 and r2 of the
characteristic equation.

1 r1 6= r2 are real (i.e., ∆ > 0).
2 r1 = ν + iµ, r2 = ν − iµ , where µ 6= 0 (i.e., ∆ < 0).
3 r1 = r2 real numbers (i.e., ∆ = 0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

ay ′′ + by ′ + cy = 0.

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if ar2 + br + c = 0.
Let ∆ = b2 − 4ac.
There are three cases for the roots r1 and r2 of the
characteristic equation.

1 r1 6= r2 are real (i.e., ∆ > 0).
2 r1 = ν + iµ, r2 = ν − iµ , where µ 6= 0 (i.e., ∆ < 0).
3 r1 = r2 real numbers (i.e., ∆ = 0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

ay ′′ + by ′ + cy = 0.

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if ar2 + br + c = 0.
Let ∆ = b2 − 4ac.
There are three cases for the roots r1 and r2 of the
characteristic equation.

1 r1 6= r2 are real (i.e., ∆ > 0).
2 r1 = ν + iµ, r2 = ν − iµ , where µ 6= 0 (i.e., ∆ < 0).
3 r1 = r2 real numbers (i.e., ∆ = 0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

ay ′′ + by ′ + cy = 0.

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if ar2 + br + c = 0.
Let ∆ = b2 − 4ac.
There are three cases for the roots r1 and r2 of the
characteristic equation.

1 r1 6= r2 are real (i.e., ∆ > 0).
2 r1 = ν + iµ, r2 = ν − iµ , where µ 6= 0 (i.e., ∆ < 0).
3 r1 = r2 real numbers (i.e., ∆ = 0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

ay ′′ + by ′ + cy = 0.

Assume solution looks like y(t) = ert .
Then y(t) solves equation if and only if ar2 + br + c = 0.
Let ∆ = b2 − 4ac.
There are three cases for the roots r1 and r2 of the
characteristic equation.

1 r1 6= r2 are real (i.e., ∆ > 0).
2 r1 = ν + iµ, r2 = ν − iµ , where µ 6= 0 (i.e., ∆ < 0).
3 r1 = r2 real numbers (i.e., ∆ = 0).

C.J. Sutton Second Order Linear ODEs, Part I



Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 1: ∆ > 0 (Distinct Real Roots)

r1 6= r2 real roots
y1(t) = er1t and y2(t) = er2t solve

ay ′′ + by ′ + cy = 0.

W (y1, y2)(t) 6= 0
So {y1(t), y2(t)} forms a fundamental set of solutions
φ(t) = c1y1(t) + c2y2(t) is the general solution.
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Case 1: ∆ > 0 (Distinct Real Roots)

Solve the following IVPs
1 y ′′ + 9y ′ + 20y = 0, y(1) = 3, y ′(1) = 0.
2 2y ′′ − 20y ′ + 42y = 0, y(2) = 3, y ′(2) = 5.
3 3y ′′ + 12y ′ + 9y = 0, y(−1) = 9, y ′(−1) = 2.
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Case 2: ∆ < 0 (Imaginary Roots)

First we recall a few things
i =
√
−1

z = ν + iµ is a complex number
(Euler’s Formula) eit = cos(t) + i sin(t)
eν+iµ = eνeiµ = eν(cos(µ) + i sin(µ))

If z and w are complex numbers then ez+w = ezew .
y(t) = ezt , then y ′(t) = zezt .
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Case 2: ∆ < 0 (Imaginary Roots)

Now since ∆ < 0 we have:
r1 = ν + iµ and r2 = ν − iµ with µ 6= 0.
ỹ1(t) = er1t and ỹ2(t) = er2t solve

ay ′′ + by ′ + cy = 0.

W (ỹ1, ỹ2)(t) 6= 0
So {ỹ1(t), ỹ2(t)} forms a fundamental set of solutions
But ỹ1 and ỹ2 are not real-valued functions.
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Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 2: ∆ < 0 (Imaginary Roots)

However
y1(t) = 1

2 ỹ1(t) + 1
2 ỹ2(t) = eνt cos(µt)

y2(t) = 1
2i ỹ1(t)− 1

2i ỹ2(t) = eνt sin(µt)
are real-valued solutions. In fact,

W (y1, y2)(t) 6= 0.

Hence, {eνt cos(µt),eνt sin(µt)} is a fundamental set of
solutions.
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 2: ∆ < 0 (Imaginary Roots)

Solve the following IVPs:

1 y ′′ + 16y = 0, y(π/2) = 1, y ′(π/2) = 0.
2 2y ′′ + 2y ′ + y = 0, y(0) = 1, y ′(0) = 3.
3 3y ′′ + 4y ′ + 3y = 0, y(−π/4) = 3, y ′(−π/4) = 2.
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 3: ∆ = 0 (Repeated Real Roots)

r1 = r2 = − b
2a are real.

y1(t) = er1t is a solution, but we need another.
Suppose y(t) = v(t)y1 = v(t)e−bt/2a is a solution.
Then

y ′2(t) = v ′(t)e−bt/2a − b
2a

v(t)e−bt/2a

and

y ′′2 (t) = v ′′(t)e−bt/2a − b
a

v ′(t)e−bt/2a +
b2

4a2 v(t)e−bt/2a.
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 3: ∆ = 0 (Repeated Real Roots)

Use the differential Eq. to see

v ′′(t) = 0.

Hence v(t) = c1t + c2

y(t) = c1te−bt/2a + c2e−bt/2a.
W (e−bt/2a, te−bt/2a)(t) = e−bt/2a

Hence, {e−bt/2a, te−bt/2a} forms a fundamental set of
solutions our ODE.
This is an example of the method of Reduction of Order
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 3: ∆ = 0 (Repeated Real Roots)

Solve the following IVPs:
1 y ′′ − y ′ + 0.25y = 0, y(0) = 2, y ′(0) = 1

3 .
2 2y ′′ + 8y ′ + 8y = 0, y(1) = 3 y ′(1) = −2.
3 y ′′ − 6y ′ + 9y = 0, y(−2) = 3 y ′(−2) = 3.
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 3: ∆ = 0 (Repeated Real Roots)

Here’s another way to find the fundamental set of solutions in
this case:

Let L = a d2

dy2 + b d
dy + c and assume ar2 + br + c = 0 has a

repeated root r1.
Then

L(ert ) = a(r − r1)2ert

it equals zero if and only if r = r1.
So, as before, y1(t) = er1t is a solution.
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Second Order Equations
Theory of Homogeneous Linear ODEs

Solving 2nd Order Linear Homogeneous ODEs

Homogeneous Constant Coefficient
Positive Discriminant
Negative Discriminant
Zero Discriminant

Case 3: ∆ = 0 (Repeated Real Roots)

Now

∂

∂r
L(ert ) = L(

∂

∂r
ert ) = L(tert ) = atert (r−r1)2 +2aert (r−r1).

Conclude that ter1t is a solution to L(y) = 0.
So, y1(t) = er1t and y2(t) = ter1t are solutions.
As before, by computing the Wronskian, we see they form
a fundamental set of solutions.
See Problems 3.4.20 & 3.4.21 for additional ways of seeing
this.
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