Math 23 Overivew

Craig J. Sutton craig.j.sutton@dartmouth.edu

Department of Mathematics Dartmouth College

Math 23 Differential Equations Winter 2013

ヘロト 人間 ト ヘヨト ヘヨト

Outline

Vector Fields and ODEs

イロト イポト イヨト イヨト

Outline

2 Falling Bodies

- 3 Predator-Prey Equation
- 4 Ordinary Differential Equations

イロン イロン イヨン イヨン

The Definition

Definition

Let $D \subset \mathbb{R}^2$ be a planar region. A vector field on D is a mapping \vec{F} that assigns to each $(x, y) \in D$ a 2-dimensional vector

$$\vec{\mathbf{F}}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j},$$

where $P, Q: D \to \mathbb{R}$ are scalar functions. We will say that $\vec{\mathbf{F}}$ is **continuous** if *P* and *Q* are continuous.

ヘロト ヘアト ヘヨト ヘ

Example: $\vec{F}(x, y) = i + 2j$

イロン イボン イヨン イヨン

Example: $\vec{\mathbf{F}}(x, y) = \mathbf{i} + 2x\mathbf{j}$

C.J. Sutton Math 23 Overivew

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Example: $\vec{\mathbf{F}}(x, y) = -y\mathbf{i} + x\mathbf{j}$

C.J. Sutton Math 23 Overivew

イロト イポト イヨト イヨト

Example: $\vec{F}(x, y) = (3x - 2y)\mathbf{i} + (2x - 2y)\mathbf{j}$

C.J. Sutton Math 23 Overivew

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Vector Fields and Flow Lines

- The previous pictures seem to suggest motion
- If you dropped a particle into the Force field, the vectors should represent the velocity of the resulting motion.
- Lets formalize this ...

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Vector Fields and Flow Lines

Definition

Let $\vec{\mathbf{F}}(x, y)$ be a vector field on $D \subset \mathbb{R}^2$. A curve $\gamma(t)$ in D is said to be a **flow line** (or **integral curve**) of $\vec{\mathbf{F}}$ if

 $\gamma'(t) = \vec{\mathsf{F}}(\gamma(t))$

for all *t*.

Moral

The velocity at time t of the particle with motion described by $\gamma(t)$ is exactly $\vec{F}(\gamma(t))$.

ヘロト 人間 ト ヘヨト ヘヨト

Vector Fields and Flow Lines

• Let
$$\vec{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$$
 be a vector field on $D \subset \mathbb{R}^2$.

• $\gamma(t) = (x(t), y(t))$ satisfies $\gamma'(t) = \vec{F}(\gamma(t))$ if and only if

$$x'(t) = P(x(t), y(t))$$

 $y'(t) = Q(x(t), y(t))$

• the above is a system of Ordinary Differential Equations.

Example

The integral curves of $\vec{\mathbf{F}}(x, y) = \mathbf{i} + 2\mathbf{j}$ are of the form $\gamma(t) = (t + c_1, 2t + c_2)$

C.J. Sutton Math 23 Overivew

э

ъ

< 🗇

Example

The integral curves of $\vec{\mathbf{F}}(x, y) = \mathbf{i} + 2x\mathbf{j}$ are of the form $\gamma(t) = (t + c_1, t^2 + 2c_1t + c_2)$

C.J. Sutton Math 23 Overivew

э

Example

The curves $\gamma(t) = (r \cos(t), r \sin(t))$ are integral curves of $\vec{\mathbf{F}}(x, y) = -y\mathbf{i} + x\mathbf{j}$.

C.J. Sutton Math 23 Overivew

ヘロン 人間 とくほ とくほ とう

Example

Some integral curves of $\vec{\mathbf{F}}(x, y) = (3x - 2y)\mathbf{i} + (2x - 2y)\mathbf{j}$.

C.J. Sutton Math 23 Overivew

ヘロト 人間 ト ヘヨト ヘヨト

Outline

2 Falling Bodies

- Predator-Prey Equation
- 4 Ordinary Differential Equations

< □ > < □ > < □ > < □ > < □ > < □ >

The Problem

We want to describe the motion of a particle that is falling.

- let t denote the time (measured in seconds)
- Let *v* be the velocity of the particle (measured in m/s). It should be a function of time

$$v = v(t).$$

- We will assume that v is positive in the downward direction.
- Can we find an equation that governs v?

- ⊒ →

Newton's Second Law & Falling Bodies

• Newton's Second Law:

F = *ma*,

where *m* is the mass and *a* is the acceleration.

- $a = \frac{dv}{dt}$
- Hence,

$$\mathbf{F}=m\mathbf{v}^{\prime}(t).$$

• Now lets give an alternative description of **F**.

æ

Newton's Second Law & Falling Bodies

• Clearly gravity acts on the particle by:

mg,

where m is the mass and g is the grav. const.

• Also, we know there is air resistance:

 $-\gamma \mathbf{V},$

where γ is the drag coefficient for the body.

Then

$$\mathbf{F} = mg - \gamma \mathbf{v}.$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Newton's Second Law & Falling Bodies

So Newton's Law forces us to conclude that we have the following relationship between t, v and v':

$$m\frac{dv}{dt}=mg-\gamma v.$$

This is an example of a differential equation.

Can we see what this means?

< ロ > < 同 > < 三 >

Slope Fields & the Falling Body Problem

The slope field for v' = 1 - 0.2v

イロト イポト イヨト イヨト 三日

Slope Fields & the Falling Body Problem

Some solutions (or integral curves) of v' = 1 - 0.2v.

<ロ> <問> <問> < 回> < 回> < □> < □> <

Outline

2 Falling Bodies

< □ > < □ > < □ > < □ > < □ > < □ >

A Model

We want to analyze the population dynamics of a system consisting of two animals, one of which is the prey and the other the predator.

Here's a possible model:

- let t denote time in months
- Let *x*(*t*) denote the number of prey at time *t*;
- Let *y*(*t*) denote the number of predators at time *t*;

< ロ > < 同 > < 三 > .

A Model

• In the absence of predators the population grows at a rate proportional to the current population:

$$\frac{dx}{dt} = ax,$$

for some a > 0.

• Similarly if x(t) = 0 for all t, then

$$\frac{dy}{dt} = -by,$$

for some b > 0. (Absence of food is a bad thing!)

ヘロト ヘアト ヘビト ヘビト

æ

A Model

 We also suppose that the number of interactions between predator and prey is proportional to the product of their populations:

 $x(t) \cdot y(t).$

 Interactions are good for the predator and not so good for the prey:

$$\frac{dx}{dt} = ax - \alpha xy$$
$$\frac{dy}{dt} = by + \gamma xy$$

イロト イポト イヨト イヨト

æ

A Model

The pair of equations

$$\frac{dx}{dt} = ax - \alpha xy$$
$$\frac{dy}{dt} = by + \gamma xy$$

is an example of a system of (non-linear) differential equations.

Can we visualize this?

ヘロン 人間 とくほ とくほ とう

In Pictures

The direction field for our predator-prey model

イロト イポト イヨト イヨト

In Pictures

Some solutions (or integral curves) of our predator prey model

ヘロト ヘアト ヘヨト ヘ

프 > 프

Outline

2 Falling Bodies

Predator-Prey Equation

イロン イロン イヨン イヨン

Basic Language

Definition

An *n*-th order ordinary differential equation is an expression of the form

$$F(t, y, y^{(1)}, y^{(2)}, \dots, y^{(n)}) = 0,$$

where $y^{(j)}(t) = \frac{d^j y}{dt^j}(t)$ is the *j*-th derivative of *y*.

When considering ODEs we will usually think about those of the form

$$y^{(n)} = f(t, y, y^{(1)}, y^{(2)}, \dots, y^{(n-1)})$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Basic Language

Example

•
$$ty + y^{(1)}y^{(3)} + y^{(2)}y^{(3)} + y^{(4)} = 0$$

2
$$cos(t)y + ln(y') + y'' = 0$$

3
$$5y'' + 3y' - 7y = \sin(t)$$

C.J. Sutton Math 23 Overivew

ヘロト 人間 とくほとくほとう

Basic Language

Definition

An *n*-th order ordinary differential equation is said to be **linear** if it is of the form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y^1 + a_0 y = g(t).$$

Otherwise, we will say that it is **nonlinear**

We will see that there are many techniques for solving linear ODEs, but it is harder to solve nonlinear equations.

イロト イポト イヨト イヨト

Basic Questions

- How do you know when a solution exists?
- If a solution exists:
 - a) how do you find it?
 - b) is it unique?
- Can you infer qualitative information about the behavior of solutions from the equations (without solving explicitly)?

ヘロト 人間 ト ヘヨト ヘヨト