2×2 Matrices \& Systems of Linear Equations

Craig J. Sutton
craig.j.sutton@dartmouth.edu
Department of Mathematics
Dartmouth College

Math 23 Differential Equations Winter 2013

Outline

(1) The Definition \& Matrix Multiplication
(2) The Determinant \& Invertibility

3 Matrices \& Systems of Linear Equations

Outline

(1) The Definition \& Matrix Multiplication

(2) The Determinant \& Invertibility

(3) Matrices \& Systems of Linear Equations

2×2 Matrices

Definition

A 2×2-matrix is a 2×2 array of numbers of the form:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

where the $a_{i j}$'s are real numbers. For example,

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-4 & 7
\end{array}\right]
$$

is a 2×2-matrix.

Multiplication

Definition

Given two matrices $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ we can multiply them to get another 2×2-matrix as follows.

$$
A B=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Multiplication Example

Example

$$
\begin{array}{r}
\text { Let } A=\left[\begin{array}{cc}
4 & 3 \\
-2 & 7
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 0 \\
3 & 1
\end{array}\right], \text { then } \\
A B=\left[\begin{array}{cc}
1 & 3 \\
25 & 7
\end{array}\right]
\end{array}
$$

and

$$
B A=\left[\begin{array}{rr}
-8 & -6 \\
10 & 16
\end{array}\right]
$$

Hence, we see that in general $A B \neq B A$. So matrix multiplication is not commutative, the way normal (scalar) multiplication is.

Multiplication Example

Example

$$
\text { Let } A=\left[\begin{array}{cc}
4 & 3 \\
-2 & 7
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 0 \\
3 & 1
\end{array}\right] \text {, then }
$$

$$
A B=\left[\begin{array}{cc}
1 & 3 \\
25 & 7
\end{array}\right]
$$

and

$$
B A=\left[\begin{array}{cc}
-8 & -6 \\
10 & 16
\end{array}\right]
$$

Hence, we see that in general $A B \neq B A$. So matrix multiplication is not commutative, the way normal (scalar) multiplication is.

Outline

(1) The Definition \& Matrix Multiplication

(2) The Determinant \& Invertibility
(3) Matrices \& Systems of Linear Equations

The Determinant

Associated to any 2×2-matrix A is a special number known as the determinant.

Definition

Given any 2×2-matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ we define the determinant as

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

The Determinant

- Consider the 2×2-matrix $A=\left[\begin{array}{cc}4 & -2 \\ 7 & 1\end{array}\right]$
- Then $\operatorname{det}(A)=18$.

Theorem

If A and B are 2×2-matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.

The Determinant

- Consider the 2×2-matrix $A=\left[\begin{array}{cc}4 & -2 \\ 7 & 1\end{array}\right]$
- $\operatorname{Then} \operatorname{det}(A)=18$.

Theorem

If A and B are 2×2-matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.

The Identity Matrix

Definition

A special 2×2-matrix is the so-called identity matrix

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The identity matrix I has the unique property that given any 2×2-matrix A we have

$$
\mathbb{I} A=A \text { and } A I=A .
$$

So $/ l$ acts on matrices the way the number 1 acts on other scalars (i.e., $1 \cdot a=a$ and $a \cdot 1=a$).

The Identity Matrix

Definition

A special 2×2-matrix is the so-called identity matrix

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The identity matrix I has the unique property that given any
2×2-matrix A we have

$$
I A=A \text { and } A I=A .
$$

So, I acts on matrices the way the number 1 acts on other scalars (i.e., $1 \cdot a=a$ and $a \cdot 1=a$).

The Identity Matrix

Definition

A special 2×2-matrix is the so-called identity matrix

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The identity matrix I has the unique property that given any
2×2-matrix A we have

$$
I A=A \text { and } A I=A
$$

So, I acts on matrices the way the number 1 acts on other scalars (i.e., $1 \cdot a=a$ and $a \cdot 1=a$).

Invertible Matrices

Definition

A matrix A is said to be invertible or non-singular if there is a matrix B such that

$$
B A=I \text { and } A B=I
$$

In this case the matrix B is unique and we denote it by A^{-1}.

Example

Let $A=\left[\begin{array}{ll}5 & 1 \\ 0 & 3\end{array}\right]$, then one can check that $\left[\begin{array}{cc}\frac{3}{15} & -\frac{1}{15} \\ 0 & \frac{5}{15}\end{array}\right]$ is its
inverse.

Invertible Matrices

Definition

A matrix A is said to be invertible or non-singular if there is a matrix B such that

$$
B A=I \text { and } A B=I
$$

In this case the matrix B is unique and we denote it by A^{-1}.

Example

Let $A=\left[\begin{array}{ll}5 & 1 \\ 0 & 3\end{array}\right]$, then one can check that $\left[\begin{array}{cc}\frac{3}{15} & -\frac{1}{15} \\ 0 & \frac{5}{15}\end{array}\right]$ is its inverse.

Test for Invertibility

We now explain the significance of the determinant.

Theorem

A 2×2-matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. In this case

$$
A^{-1}=\left[\begin{array}{cc}
\frac{a_{22}}{\operatorname{det}(A)} & -\frac{a_{12}}{\operatorname{det}(A)} \\
-\frac{a_{21}}{\operatorname{det}(A)} & \frac{a_{11}}{\operatorname{det}(A)}
\end{array}\right] .
$$

Test for Invertibility

Example

Let $A=\left[\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right]$, then $\operatorname{det}(A)=8$, so A is invertible and its inverse is

$$
A^{-1}=\left[\begin{array}{ll}
5 / 8 & 2 / 8 \\
1 / 8 & 2 / 8
\end{array}\right]
$$

Outline

(1) The Definition \& Matrix Multiplication

(2) The Determinant \& Invertibility

3 Matrices \& Systems of Linear Equations

Given a 2×2-matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and a 2×1-matrix $b=\left[\begin{array}{l}x \\ y\end{array}\right]$ we may define their product to give a 2×1-matrix as follows.

$$
\begin{aligned}
A b & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{l}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y
\end{array}\right]
\end{aligned}
$$

Example

Let $A=\left[\begin{array}{cc}-1 & 0 \\ 6 & -3\end{array}\right]$ and $b=\left[\begin{array}{c}4 \\ -1\end{array}\right]$, then

$$
A b=\left[\begin{array}{c}
-4 \\
27
\end{array}\right]
$$

System of Linear Equations

Recall from High School the following problem

Problem

Find all pairs of numbers (x, y) such that

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

Each equation represents a line in the $x y$-plane. So we're looking for all intersections of these two lines.

System of Linear Equations

Recall from High School the following problem

Problem

Find all pairs of numbers (x, y) such that

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

Each equation represents a line in the $x y$-plane. So we're looking for all intersections of these two lines.

System of Linear Equations

Given two lines in the $x y$-plane we have the following possibilities.
(1) The lines are parallel

- Lines don't intersect: no solutions to the system, or
- the lines are precisely the same: infinitely many solutions to the system.
(2) The lines aren't parallel
- exactly one solution to the system.

System of Linear Equations

Given two lines in the $x y$-plane we have the following possibilities.
(1) The lines are parallel

- Lines don't intersect: no solutions to the system, or
- the lines are precisely the same: infinitely many solutions to the system.
(2) The lines aren't parallel
- exactly one solution to the system.

System of Linear Equations

Given two lines in the $x y$-plane we have the following possibilities.

- The lines are parallel
- Lines don't intersect: no solutions to the system, or
- the lines are precisely the same: infinitely many solutions to the system.
(2) The lines aren't parallel
- exactly one solution to the system.

System of Linear Equations

The system

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

can be expressed in matrix form by

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

System of Linear Equations

Theorem

The system

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

has a unique solution if and only if $\operatorname{det}(A) \neq 0$. In which case the unique solution is given by

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=A^{-1}\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Examples

Determine whether the following systems have unique solutions or not. If unique, find the solution.
(1)

$$
\begin{aligned}
5 x+2 y & =7 \\
-1 x+2 y & =-1
\end{aligned}
$$

(2)

$$
\begin{aligned}
3 x+2 y & =5 / 2 \\
-6 x+-4 y & =4
\end{aligned}
$$

System of Linear Equations

Moral

- Systems of linear equations can also be expressed using matrix notation.
- The determinant gives us a test for whether a system has a unique solution or not.
- Non-zero determinant allows us to easily find the unique solution of the system.
- A zero determinant tells us the system either has no solutions or it has infinitely many solutions.

System of Linear Equations

Moral

- Systems of linear equations can also be expressed using matrix notation.
- The determinant gives us a test for whether a system has a unique solution or not.
- Non-zero determinant allows us to easily find the unique solution of the system.
- A zero determinent tells us the system either has no solutions or it has infinitely many solutions.

System of Linear Equations

Moral

- Systems of linear equations can also be expressed using matrix notation.
- The determinant gives us a test for whether a system has a unique solution or not.
- Non-zero determinant allows us to easily find the unique solution of the system.
- A zero determinant tells us the system either has no solutions or
it has infinitely many solutions.

System of Linear Equations

Moral

- Systems of linear equations can also be expressed using matrix notation.
- The determinant gives us a test for whether a system has a unique solution or not.
- Non-zero determinant allows us to easily find the unique solution of the system.
- A zero determinant tells us the system either has no solutions or it has infinitely many solutions.

