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Recap

We recall that we have techniques for solving some special
ODE’s:

First Order Linear
Separable
Exact

However, it would be nice if there was a more general way to
know if there’s a solution just by looking at the ODE.
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Existence & Uniqueness: First Order Linear

Recall the following result for first-order linear ODEs.

Theorem ( Thm. 2.4.1)
Consider the first order linear differential equation

y ′ + p(t)y = g(t); y(t0) = y0. (1.1)

If the functions p(t) & g(t) are continuous on an open interval
a < t < b containing t0, then there is a unique solution y = φ(t)
defined on a < t < b satisfying Eq. 1.1.
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Examples

Example

Consider the first-order linear IVP y ′ + 3t2y = ln(t), y(1) = 4.

p(t) = 3t2 is continuos on the whole real line.

g(t) = ln(t) is continuous on the interval 0 < t < +∞.

Hence, the largest interval containing t0 = 1 on which p(t) and
g(t) are both continuous is

0 < t < +∞.

Therefore, by the theorem the IVP has a unique solution y(t)
defined on all of 0 < t < +∞
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Example
Consider the first-order linear IVP
y ′ + t2

(t−2)y = 1
(t+3)(t−5) , y(−1) = π.

p(t) = t2

(t−2) is defined and continuous for t 6= 2.

g(t) = 1
(t+3)(t−5) is defined and continuous for t 6= −3,5.

Hence, the largest interval containing t0 = −1 on which p(t)
and g(t) are both continuous is

−3 < t < 2.

Therefore, by the theorem the IVP has a unique solution y(t)
defined on all of −3 < t < 2.
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Exercises

In each of the following IVPs, find the largest interval of solution
guaranteed to exist by the Existence & Uniqueness Theorem
for First-Order Linear ODEs.

1 ty ′ + 2y = 4t2, y(1) = 2.
2 y ′ + 2

(t−4)y = ln(−(t + 3)(t − 11)), y(1
2) = 1010.

3 e(t−3)(t+7)y ′ − 3t3y = cos(t3 − 3t), y(−5) = 3.

C.J. Sutton First Order ODEs, Part II



Existence & Uniqueness Theorems
Modeling

Autonomous Equations

First Order Linear ODEs
General First Order ODEs
Linear vs. Non-Linear

Existence & Uniqueness: General First Order ODEs

Theorem
Consider the first order IVP

y ′ = f (t , y); y(t0) = y0. (1.2)

If the functions f & ∂f
∂y are continuous on some rectangle

R = {(t , y) : α < t < β and γ < y < δ}

containing (t0, y0), then on some interval (t0 − h, t0 + h) ⊂ (α, β)
there is a unique solution y = φ(t) to Eq 1.2.

Remark
If f is continuous on a neighborhood of (t0, y0), then a solution exists,
but it need not be unique.
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Using the Existence and Uniqueness Theorem

Example

Consider the IVP dy
dt = f (t , y) = 3t2+4t+2

2yt+t2 , y(1) = 1.

f and ∂f
∂y exist and are continuous away from the lines t = 0 and

y = − t
2 .

LetR be any rectangle around (t0, y0) = (1,1) which avoids
these lines (e.g.,R = {(t , y) : 0 < t < 2,0 < y < 2}).
Then f and ∂f

∂y are both continuous onR.

Therefore, by the Existence & Uniqueness Theorem there is a
unique solution y(t) to the IVP on some interval containing
t0 = 1.

Do you know how to find this unique solution?
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Using the Existence and Uniqueness Theorem

Example

Consider the IVP dy
dx = g(x , y) = 3x2+4x+2

2(y−1) , y(0) = −1.

g and ∂g
∂y are defined and continuous everywhere except on the

line y = 1.

Since (x0, y0) = (0,−1) does not sit on the line y = 1, we may
draw a rectangleR around it on which g and ∂g

∂y are continuous.

Therefore, by the theorem there is a unique solution y(x) to the
IVP on some interval containing 0.

Do you know how to find this unique solution?
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Using the Existence and Uniqueness Theorem

Example

Consider the IVP dy
dx = g(x , y) = 3x2+4x+2

2(y−1) , y(0) = +1.

g and ∂g
∂y are defined and continuous everywhere except on the

line y = 1.

Since (x0, y0) = (0,1) sits on the line y = 1, we cannot draw a
rectangleR around it on which h and ∂h

∂y are continuous.

Therefore, the Existence & Uniqueness theorem does not apply.

Can we still find a solution? If so, is it unique?
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Using the Existence and Uniqueness Theorem

Example

Consider the IVP y ′ = h(t , y) = y
1
3 , y(0) = 0.

h is continuous everywhere, but ∂h
∂y does not exist at

(t0, y0) = (0,0).

Therefore, the Existence & Uniqueness theorem does not apply.

Can we still find a solution? If so, is it unique?

Find all the values of (t0, y0) for which the corresponding IVP
has a unique solution?
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Using the Existence and Uniqueness Theorem

Example

Consider the IVP y ′ = k(x , y) = y2, y(0) = 1.

k and ∂k
∂y are continuous everywhere.

Therefore, the Existence & Uniqueness theorem the IVP has a
unique solution.

How large is the interval on which this solution exists?
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Exercises

Determine what (if anything) the Existence and Uniqueness
Theorems say about solutions to the following IVPs

1 y ′ = t2+ty+3
t2+y2 , y(0) = −1.

2 y ′ = cos(t
√
|y |), y(1) = −3.

3 y ′ + ln(t)y = sin(t2 + 3), y(0) = 3.
4 y ′ − |y |t = 0, y(1) = 0.
5 y ′ = cos(y), y(1) = π/2.
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First Order ODEs: Linear vs. Non-Linear

1 General Solution
Linear Eqs.: (under a mild condition) we can obtain exact
solutions using integrating factor.
Non-linear Eqs.: methods might miss some valid solutions.

2 Interval of Definition
Linear Eqs.: look for discontinuities in p(t) & g(t).
Non-linear Eqs.: not so easy.

3 Explicit vs. Implicit Solutions
Linear Eqs.: get explicit solutions (if you can perform
integral).
Non-linear Eqs.: usually get implicit solutions. In practice
need numerical techniques (e.g., Euler’s method).
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The Three Steps of Mathematical Modeling

1 Construction: State problem & assumptions about
process invovled. Translate into mathematics.

2 Analysis: Solve model explicitly and/or gain
qualitative/quantitative information about solution.

3 Real World vs. Model: A model is only as good as the
predictions it makes.
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Salt in a Tank

Problem
Suppose a tank contains 100 gallons of fresh water. Then water
containing 1

2 lb. of salt per gallon is poured into the tank at a rate of 2
gal./min. and the mixture leaves the tank at a rate of 2 gal./min. After
10 minutes the process is stopped and fresh water is pumped in at the
rate of 2 gal./min., with the mixture leaving the tank at the same rate.
Find the amount of salt in the tank at the end of an additional 10
minutes.
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From Rags to Riches

Problem
Suppose a person with no initial capital invests k dollars per year at
an annual rate of return r . Assume that investments are made
continuously and that the return is compounded continuously.

1 Determine the sum S(t) accumulated after t years;
2 If r = 7.5% determine the rate k so that after 40 years our

investor has $ 1 million.
3 Suppose our investor can afford to save $ 2000 per month.

Determine the interest rate needed in order to accrue $ 1 million
after 40 years.
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From Rags to Riches: Some Background

If you invest S0 at an annual rate of r compounded m times
per year, then

S(t) = S0(1 +
r
m

)mt ,

is your balance after t years.
One can show that

lim
m→∞

S0(1 +
r
m

)mt = S0ert

Hence, when we say we invest at an annual rate of r
compounded continuously we have

S(t) = S0ert .
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From Rags to Riches: Some Background

As an ODE a continuous growth rate is expressed as

dS
dt

= rS

A first order linear ODE.
Now, suppose that deposits, withdrawals, etc. take place at
a constant rate k , then

dS
dt

= rS + k

The solution is of the form

S(t) = S0ert +
k
r
(ert − 1),

where S0 is the initial investment.
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Equilibrium Solutions

Definition
Let y ′ = f (t , y) be a first order ODE. If α is such that f (t , α) = 0 for
all t , then

y(t) = α

is called an equilibrium solution of the ODE.

C.J. Sutton First Order ODEs, Part II



Existence & Uniqueness Theorems
Modeling

Autonomous Equations

Equilibrium Solutions

Example

Consider the ODE y ′ = cos(t)(y2 + y − 6)(y2 − 16). It has
equilibrium solutions:

y(t) = −3
y(t) = 2
y(t) = −4
y(t) = 4
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Example

Consider the ODE y ′ = y2 + 2y − 8. It has equilibrium solutions:

y(t) = −4
y(t) = 2

Notice in this case f (t , y) only depends on y .
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Equilibrium Solutions

Consider the ODE y ′ = y2 + 2y − 8 and its equilibrium
solutions: y(t) = −4 and y(t) = 2. Then

dy
dt > 0 for y > 2;
dy
dt < 0 for −4 < y < 2 ;
dy
dt > 0 for y < −4;

We can see that y(t) = 2 is an unstable equilibrium while
y(t) = −4 is a stable equilibrium...
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Equilibrium Solutions & Autonomy

Definition
A first order ODE of the form

y ′ = f (y)

is said to be autonomous. That is, the derivative of y with respect
to t has no explicit dependence on t .
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Equilibrium Solutions & Autonomy

The equilibrium solutions of y ′ = f (y) correspond to the zeroes
of f (y).

Definition
Let y(t) = K be an equilibrium solution of y ′ = f (y), then:

1 φ is said to be an asymptotically stable solution if there is a δ
such that if y(t) is a solution to the IVP

y ′ = f (y), y(t0) = y0,

where y0 ∈ (K − δ,K ) ∪ (K ,K + δ), then limt→∞ y(t) = K .
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