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What is a First Order Linear Equation?

Definition
A general first-order linear ODE has the form

y ′ + p(t)y = g(t),

where it is understood that y is a function of t .

Example
A falling body of mass m is governed by the linear ODE

dv
dt

= g − γ

m
v .
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An Idea

Here is an “easy” first order equation:

y ′ = g(t).

To solve it, we just integrate

y(t) =

∫ t
g(s)ds + C

Can we reduce all first order linear ODEs to an (easy)
integration problem?
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Motivating Example

Consider
y ′ + 7y = 3t (1.1)

Let µ(t) = e7t .
Then y(t) solves Eq 1.1 if and only if y(t) solves

µ(t)y ′ + µ(t)7y = 3µ(t)t (1.2)

But, using the product rule, we see the LHS of Eq 1.2 can
be expressed as

d
dt

(µ(t)y).
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Motivating Example

Hence, y(t) solves Eq 1.1 if and only if y(t) satisfies

d
dt

(e7ty) = 3te7t (1.3)

Integrating both sides we get:

y(t) =
3
7

t − 3
49

+ Ce−7t .

(Use initial conditions to solve for C.)
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Motivating Example

Moral
We started with the equation

y ′ + 7y = 3t

and by multiplying this equation by µ(t) = e7t we reduced our linear
ODE to an easy integration problem. Consequently, we call µ(t) an
integrating factor.
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Motivating Example

How did we find the integrating factor µ(t) = e7t ?

Compare d
dt (µ(t)y) and µ(t)y ′ + 7µ(t)y .

Equal if µ′(t) = 7µ(t).
µ(t) = e7t .
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The Technique in General

Let
y ′ + p(t)y = g(t) (1.4)

be a general first order linear ODE, where p and g are
continuous.
For any µ(t) > 0 we see y(t) solves Eq 1.4 if and only if
y(t) solves

µ(t)y ′ + µ(t)p(t)y = µ(t)g(t). (1.5)

Now, lets be clever about how we choose µ.
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The Technique in General

Let µ(t) = exp(
∫ t p(s)ds) > 0.

Then

y ′ + p(t)y = g(t)⇐⇒ d
dt

(µ(t)y) = µ(t)g(t). (1.6)

Why??
Integrating Eq 1.6 we see

y(t) =

∫ t
t0
µ(s)g(s)ds + C

µ(t)
(1.7)
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The Technique in General

Definition
The function

µ(t) = exp(

∫ t
p(s)ds)

is called the integrating factor for Eq 1.4.
It allows us to substitute the (easy) integration problem

d
dt

(µ(t)y) = µ(t)g(t)

for the linear ODE
y ′ + p(t)y = g(t).
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The Technique in General

With a little bit of thought we can see that we’ve actually shown
the following.

Theorem (2.4.1)

If p and g are cont. on an open interval I = (α, β) containing t0,
there is a unique function y = φ(t) on I that satisfies the IVP

y ′ + p(t)y = g(t), y(t0) = y0.
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Exercises

1 Let µ(t) = exp(
∫ t p(s)ds). Check directly that

y(t) =
R t µ(s)g(s)ds+C

µ(t) solves

y ′ + p(t)y = g(t).

2 Solve the initial value problem

y ′ − y = 2te2t , y(0) = 1.

3 Solve the IVP

y ′ +
2
t

y =
cos(t)

t
, y(π) = 0, t > 0.
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First it will be useful to recall the method of integration by parts:

Let f (x) be an integrable function
Let g(x) be differentiable
Then ∫

f (g(x))g′(x) dx =

∫
f (u) du,

where u = g(x).
Or, recall that if u = g(x) is differentiable, then

du =
dg
dx

dx = g′(x) dx

(do you remember differentials from calculus?)
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Recall that a general first order ODE is of the form

dy
dx

= f (x , y)

Such an equation can always be expressed as

M(x , y) + N(x , y)
dy
dx

= 0.

(E.g., M(x , y) = −f (x , y) and N(x , y) = 1.)
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Definition
If a first order ODE y ′ = f (x , y) can be expressed in the form

M(x) + N(y)y ′ = 0,

then we say the equation is separable.
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Example

Consider the non-linear ODE

dy
dx

=
x3

1− y
, y(0) = 1. (2.1)

This can be re-written as

− x3 + (1− y)
dy
dx

= 0 (2.2)

So, it is separable.
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Example

We now observe...
Rearranging we obtain

(1− y)
dy
dx

= x3

Integrating both sides w.r.t. x we obtain∫
(1− y)

dy
dx

dx =

∫
x3 dx .

But, dy = dy
dx dx . (Why?).

So we have ∫
(1− y) dy =

x4

4
+ C.
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Example

Integrating we obtain

y − y2

2
=

x4

4
+ C.

which defines y implicitly as a function of x .
Using our initial condition y(0) = 1 we get

C = −1
2
.

So y , the solution to our IVP, is defined implicitly by

y − y2

2
=

x4

4
− 1

2
.
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Example

Moral
The separability of our equation allowed us to reduce our work to an
easy integration problem.

Question
Can we exploit separability in general?
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The Technique

Suppose we have a separable equation

M(x) + N(y)
dy
dx

= 0. (2.3)

Rearranging we get

N(y)
dy
dx

= −M(x) (2.4)

Let y = y(x) be a differentiable function satisfying Eq. 2.4.
Noticing dy = dy

dx dx and integrating both sides of
Equation 2.4 w.r.t. x we get∫

N(y) dy = −
∫

M(x) dx .

An implicit expression of y in terms of x .
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The Technique

So, we’ve seen that separability has led us to∫
N(y) dy = −

∫
M(x) dx ,

which (after integrating) implicitly defines y as function of x
However, it’s not always possible to explicitly solve the
resulting expression for y as a function of x , although in
theory we know such a function exists.
In such cases one usually resorts to numerical methods to
obtain an approximation of the exact solution.
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Exercises

1 Solve the IVP

y ′ =
1− 2x

y
, y(1) = −2.

2 Solve the differential equation y ′ = 3x2−1
3+2y .

3 For each value of α solve the IVP

dy
dt

= y2, y(0) = α.

(What’s the moral of this problem?)
4 Find all solutions to xy ′ = (1− y2)

1
2 .

(Hint: Do you remember how to compute d
dx sin−1(x)?)
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As we noted earlier, any first order ODE

dy
dx

= f (x , y)

can always be expressed as

M(x , y) + N(x , y)
dy
dx

= 0.

Indeed, just take M(x , y) = −f (x , y) and N(x , y) = 1
Now . . .
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Exact Differential Equation: The Definition

Definition
A first order ODE of the form

M(x , y) + N(x , y)y ′ = 0 (3.1)

is said to be exact if there is a function Ψ(x , y) such that

∂Ψ

∂x
= M(x , y) and

∂Ψ

∂y
= N(x , y).
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What’s so Special About Exact Equations?

Suppose M(x , y) + N(x , y)y ′ = 0 is an exact equation.
Let Ψ(x , y) be as in the definition. Then we get

d
dx

(Ψ(x , y)) =
∂Ψ

∂x
+
∂Ψ

∂y
y ′

= M(x , y) + N(x , y)y ′

= 0

Integrating we obtain

Ψ(x , y) = C.

which implicitly defines y as a function of x .
To determine C use initial condition y0 = y(x0).
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Example

Consider the IVP

3x2 − y + (2y − x)y ′ = 0, y(1) = 3.

Ψ(x , y) = x3 − xy + y2 is such that ∂Ψ
∂x = 3x2 − y and

∂Ψ
∂y = 2y − x .
Then our ODE becomes

d
dx

Ψ(x , y) = 0.

Integrating we get

x3 − xy + y2 = C.

The initial condition y(1) = 3 then tells us

x3 − xy + y2 = 11.
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Example

How did we find the function Ψ(x , y) ?

Since ∂Ψ
∂x = M(x , y) = 3x2 − y integration shows

Ψ(x , y) =

∫
M(x , y)dx + h(y)

= x3 − xy + h(y)

Then since ∂
∂y Ψ(x , y) = N(x , y) = 2y − x we see

h′(y)− x = 2y − x .

Therefore Ψ(x , y) = x3 − xy + y2.

Where have you used this procedure before?
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Criteria for Exactness

Theorem

Let the functions M(x , y),N(x , y), ∂M
∂y and ∂N

∂x be continuous in
the rectangular region R = [a,b]× [c,d ] in the xy-plane. Then

M(x , y) + N(x , y)y ′ = 0

is an exact equation in R if and only if

My (x , y) = Nx (x , y).

Notice that this applies to our previous example.
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Exercise

Check whether each of the following is exact. If it is, then find
the solution.

1 (2x + 3) + (2y − 2)y ′ = 0.
2 (3x2 − 2xy + 2) dx + (6y2 − x2 + 3) dy = 0
3 (2x + 4y) + (2x − 2y)y ′ = 0
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Summary

In this module we have studied three types of first order
equations:

First order linear equations
Separable equations
Exact equations

What makes these equations special is that solving them
essentially boils down to computing an appropriate integral.
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