First Order ODEs, Part I

Craig J. Sutton
craig.j.sutton@dartmouth.edu
Department of Mathematics
Dartmouth College

Math 23 Differential Equations Winter 2013

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action

Separable Equations

- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action

Exact Equations

- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action
(2) Separable Equations
- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action

Exact Equations

- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action
(2) Separable Equations
- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action
(3) Exact Equations
- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action
(2) Separable Equations
- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action
(3) Exact Equations
- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

What is a First Order Linear Equation?

Definition

A general first-order linear ODE has the form

$$
y^{\prime}+p(t) y=g(t),
$$

where it is understood that y is a function of t.

Example

A falling body of mass m is governed by the linear ODE

$$
\frac{d v}{d t}=g-\frac{\gamma}{m} v
$$

An Idea

- Here is an "easy" first order equation:

$$
y^{\prime}=g(t) .
$$

- To solve it, we just integrate

$$
y(t)=\int^{t} g(s) d s+C
$$

- Can we reduce all first order linear ODEs to an (easy) integration problem?

Motivating Example

- Consider

$$
\begin{equation*}
y^{\prime}+7 y=3 t \tag{1.1}
\end{equation*}
$$

- Let $\mu(t)=e^{7 t}$.
- Then $y(t)$ solves Eq 1.1 if and only if $y(t)$ solves

$$
\begin{equation*}
\mu(t) y^{\prime}+\mu(t) 7 y=3 \mu(t) t \tag{1.2}
\end{equation*}
$$

- But, using the product rule, we see the LHS of Eq 1.2 can be expressed as

$$
\frac{d}{d t}(\mu(t) y)
$$

Motivating Example

- Hence, $y(t)$ solves Eq 1.1 if and only if $y(t)$ satisfies

$$
\begin{equation*}
\frac{d}{d t}\left(e^{7 t} y\right)=3 t e^{7 t} \tag{1.3}
\end{equation*}
$$

- Integrating both sides we get:

$$
y(t)=\frac{3}{7} t-\frac{3}{49}+C e^{-7 t}
$$

(Use initial conditions to solve for C.)

Motivating Example

Moral

We started with the equation

$$
y^{\prime}+7 y=3 t
$$

and by multiplying this equation by $\mu(t)=e^{7 t}$ we reduced our linear ODE to an easy integration problem. Consequently, we call $\mu(t)$ an integrating factor.

Motivating Example

How did we find the integrating factor $\mu(t)=e^{7 t}$?

- Compare $\frac{d}{d t}(\mu(t) y)$ and $\mu(t) y^{\prime}+7 \mu(t) y$.
- Equal if $\mu^{\prime}(t)=7 \mu(t)$.
- $\mu(t)=e^{7 t}$.

The Technique in General

- Let

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1.4}
\end{equation*}
$$

be a general first order linear ODE, where p and g are continuous.

- For any $\mu(t)>0$ we see $y(t)$ solves Eq 1.4 if and only if $y(t)$ solves
- Now, lets be clever about how we choose μ.

The Technique in General

- Let

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1.4}
\end{equation*}
$$

be a general first order linear ODE, where p and g are continuous.

- For any $\mu(t)>0$ we see $y(t)$ solves Eq 1.4 if and only if $y(t)$ solves

$$
\begin{equation*}
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) g(t) \tag{1.5}
\end{equation*}
$$

- Now, lets be clever about how we choose μ.

The Technique in General

- Let

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1.4}
\end{equation*}
$$

be a general first order linear ODE, where p and g are continuous.

- For any $\mu(t)>0$ we see $y(t)$ solves Eq 1.4 if and only if $y(t)$ solves

$$
\begin{equation*}
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) g(t) \tag{1.5}
\end{equation*}
$$

- Now, lets be clever about how we choose μ.

The Technique in General

- Let $\mu(t)=\exp \left(\int^{t} p(s) d s\right)>0$.
- Then

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \Longleftrightarrow \frac{d}{d t}(\mu(t) y)=\mu(t) g(t) \tag{1.6}
\end{equation*}
$$

Why??

- Integrating Eq 1.6 we see

The Technique in General

- Let $\mu(t)=\exp \left(\int^{t} p(s) d s\right)>0$.
- Then

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \Longleftrightarrow \frac{d}{d t}(\mu(t) y)=\mu(t) g(t) \tag{1.6}
\end{equation*}
$$

Why??

- Integrating Eq 1.6 we see

$$
\begin{equation*}
y(t)=\frac{\int_{t_{0}}^{t} \mu(s) g(s) d s+C}{\mu(t)} \tag{1.7}
\end{equation*}
$$

The Technique in General

Definition

The function

$$
\mu(t)=\exp \left(\int^{t} p(s) d s\right)
$$

is called the integrating factor for Eq 1.4.
It allows us to substitute the (easy) integration problem $\frac{d}{d t}(\mu(t) y)=\mu(t) g(t)$
for the linear ODE
$y^{\prime}+p(t) y=g(t)$.

The Technique in General

Definition

The function

$$
\mu(t)=\exp \left(\int^{t} p(s) d s\right)
$$

is called the integrating factor for Eq 1.4.
It allows us to substitute the (easy) integration problem

$$
\frac{d}{d t}(\mu(t) y)=\mu(t) g(t)
$$

for the linear ODE

$$
y^{\prime}+p(t) y=g(t) .
$$

The Technique in General

With a little bit of thought we can see that we've actually shown the following.

Theorem (2.4.1)

If p and g are cont. on an open interval $I=(\alpha, \beta)$ containing t_{0}, there is a unique function $y=\phi(t)$ on I that satisfies the IVP

$$
y^{\prime}+p(t) y=g(t), y\left(t_{0}\right)=y_{0}
$$

Exercises

(1) Let $\mu(t)=\exp \left(\int^{t} p(s) d s\right)$. Check directly that

$$
y(t)=\frac{\int^{t} \mu(s) g(s) d s+C}{\mu(t)} \text { solves }
$$

$$
y^{\prime}+p(t) y=g(t)
$$

(2) Solve the initial value problem

$$
y^{\prime}-y=2 t e^{2 t}, y(0)=1
$$

(3) Solve the IVP

$$
y^{\prime}+\frac{2}{t} y=\frac{\cos (t)}{t}, y(\pi)=0, t>0
$$

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action
(2) Separable Equations
- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action
(3) Exact Equations
- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

First it will be useful to recall the method of integration by parts:

- Let $f(x)$ be an integrable function
- Let $g(x)$ be differentiable
- Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

where $u=g(x)$.

- Or, recall that if $u=g(x)$ is differentiable, then

$$
d u=\frac{d g}{d x} d x=g^{\prime}(x) d x
$$

(do you remember differentials from calculus?)

- Recall that a general first order ODE is of the form

$$
\frac{d y}{d x}=f(x, y)
$$

- Such an equation can always be expressed as

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

(E.g., $M(x, y)=-f(x, y)$ and $N(x, y)=1$.)

Definition

If a first order ODE $y^{\prime}=f(x, y)$ can be expressed in the form

$$
M(x)+N(y) y^{\prime}=0
$$

then we say the equation is separable.

Example

- Consider the non-linear ODE

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x^{3}}{1-y}, y(0)=1 \tag{2.1}
\end{equation*}
$$

- This can be re-written as

$$
\begin{equation*}
-x^{3}+(1-y) \frac{d y}{d x}=0 \tag{2.2}
\end{equation*}
$$

So, it is separable.

Example

We now observe...

- Rearranging we obtain

$$
(1-y) \frac{d y}{d x}=x^{3}
$$

- Integrating both sides w.r.t. x we obtain

$$
\int(1-y) \frac{d y}{d x} d x=\int x^{3} d x
$$

- But, $d y=\frac{d y}{d x} d x$. (Why?).
- So we have

$$
\int(1-y) d y=\frac{x^{4}}{4}+C
$$

Example

- Integrating we obtain

$$
y-\frac{y^{2}}{2}=\frac{x^{4}}{4}+C
$$

which defines y implicitly as a function of x.

- Using our initial condition $y(0)=1$ we get

$$
C=-\frac{1}{2}
$$

- So y, the solution to our IVP, is defined implicitly by

$$
y-\frac{y^{2}}{2}=\frac{x^{4}}{4}-\frac{1}{2}
$$

Example

Moral

The separability of our equation allowed us to reduce our work to an easy integration problem.

Question

Can we exploit separability in general?

The Technique

- Suppose we have a separable equation

$$
\begin{equation*}
M(x)+N(y) \frac{d y}{d x}=0 \tag{2.3}
\end{equation*}
$$

- Rearranging we get

$$
N(y) \frac{d y}{d x}=-M(x)
$$

- Let $y=y(x)$ be a differentiable function satisfying Eq. 2.1.
- Noticing $d y=\frac{d y}{d x} d x$ and integrating both sides of Equation 2.4 w.r.t. x we get

$$
\int N(y) d y=-\int M(x) d x
$$

The Technique

- Suppose we have a separable equation

$$
\begin{equation*}
M(x)+N(y) \frac{d y}{d x}=0 . \tag{2.3}
\end{equation*}
$$

- Rearranging we get

$$
\begin{equation*}
N(y) \frac{d y}{d x}=-M(x) \tag{2.4}
\end{equation*}
$$

- Let $y=y(x)$ be a differentiable function satisfying Eq. 2.4.
- Noticing $d y=\frac{d y}{d x} d x$ and integrating both sides of Equation 2.4 w.r.t. x we get

An implicit expression of y in terms of x.

The Technique

- Suppose we have a separable equation

$$
\begin{equation*}
M(x)+N(y) \frac{d y}{d x}=0 . \tag{2.3}
\end{equation*}
$$

- Rearranging we get

$$
\begin{equation*}
N(y) \frac{d y}{d x}=-M(x) \tag{2.4}
\end{equation*}
$$

- Let $y=y(x)$ be a differentiable function satisfying Eq. 2.4.
- Noticing $d y=\frac{d y}{d x} d x$ and integrating both sides of Equation 2.4 w.r.t. x we get

An implicit expression of y in terms of x.

The Technique

- Suppose we have a separable equation

$$
\begin{equation*}
M(x)+N(y) \frac{d y}{d x}=0 . \tag{2.3}
\end{equation*}
$$

- Rearranging we get

$$
\begin{equation*}
N(y) \frac{d y}{d x}=-M(x) \tag{2.4}
\end{equation*}
$$

- Let $y=y(x)$ be a differentiable function satisfying Eq. 2.4.
- Noticing $d y=\frac{d y}{d x} d x$ and integrating both sides of Equation 2.4 w.r.t. x we get

$$
\int N(y) d y=-\int M(x) d x .
$$

An implicit expression of y in terms of x.

The Technique

- So, we've seen that separability has led us to

$$
\int N(y) d y=-\int M(x) d x
$$

which (after integrating) implicitly defines y as function of x

- However, it's not always possible to explicitly solve the resulting expression for y as a function of x, although in theory we know such a function exists.
- In such cases one usually resorts to numerical methods to obtain an approximation of the exact solution.

Exercises

(1) Solve the IVP

$$
y^{\prime}=\frac{1-2 x}{y}, y(1)=-2
$$

(2) Solve the differential equation $y^{\prime}=\frac{3 x^{2}-1}{3+2 y}$.
(3) For each value of α solve the IVP

$$
\frac{d y}{d t}=y^{2}, y(0)=\alpha
$$

(What's the moral of this problem?)
(4) Find all solutions to $x y^{\prime}=\left(1-y^{2}\right)^{\frac{1}{2}}$.
(Hint: Do you remember how to compute $\frac{d}{d x} \sin ^{-1}(x)$?)

Outline

(1) First Order Linear Equations

- Definition \& Motivating Example
- The Integrating Factor
- The Method in Action
(2) Separable Equations
- Definition \& Motivating Example
- Separable Equations in General
- The Method in Action
(3) Exact Equations
- The Definition \& Technique
- Example
- Test for Exactness
- The Method in Action

As we noted earlier, any first order ODE

$$
\frac{d y}{d x}=f(x, y)
$$

can always be expressed as

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

Indeed, just take $M(x, y)=-f(x, y)$ and $N(x, y)=1$ Now ...

Exact Differential Equation: The Definition

Definition

A first order ODE of the form

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{3.1}
\end{equation*}
$$

is said to be exact if there is a function $\Psi(x, y)$ such that

$$
\frac{\partial \Psi}{\partial x}=M(x, y) \text { and } \frac{\partial \Psi}{\partial y}=N(x, y)
$$

What's so Special About Exact Equations?

- Suppose $M(x, y)+N(x, y) y^{\prime}=0$ is an exact equation.
- Let $\Psi(x, y)$ be as in the definition. Then we get

$$
\begin{aligned}
\frac{d}{d x}(\Psi(x, y)) & =\frac{\partial \Psi}{\partial x}+\frac{\partial \Psi}{\partial y} y^{\prime} \\
& =M(x, y)+N(x, y) y^{\prime} \\
& =0
\end{aligned}
$$

- Integrating we obtain

$$
\Psi(x, y)=C
$$

which implicitly defines y as a function of x.

- To determine C use initial condition $y_{0}=y\left(x_{0}\right)$.

Example

- Consider the IVP

$$
3 x^{2}-y+(2 y-x) y^{\prime}=0, y(1)=3 .
$$

- $\Psi(x, y)=x^{3}-x y+y^{2}$ is such that $\frac{\partial \Psi}{\partial x}=3 x^{2}-y$ and $\frac{\partial \psi}{\partial y}=2 y-x$.
- Then our ODE becomes

$$
\frac{d}{d x} \Psi(x, y)=0 .
$$

- Integrating we get

$$
x^{3}-x y+y^{2}=C .
$$

- The initial condition $y(1)=3$ then tells us

$$
x^{3}-x y+y^{2}=11 .
$$

Example

How did we find the function $\Psi(x, y)$?

- Since $\frac{\partial \Psi}{\partial x}=M(x, y)=3 x^{2}-y$ integration shows

$$
\begin{aligned}
\Psi(x, y) & =\int M(x, y) d x+h(y) \\
& =x^{3}-x y+h(y)
\end{aligned}
$$

- Then since $\frac{\partial}{\partial y} \Psi(x, y)=N(x, y)=2 y-x$ we see

$$
h^{\prime}(y)-x=2 y-x
$$

- Therefore $\Psi(x, y)=x^{3}-x y+y^{2}$.
- Where have you used this procedure before?

Criteria for Exactness

Theorem

Let the functions $M(x, y), N(x, y), \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ be continuous in the rectangular region $\mathcal{R}=[a, b] \times[c, d]$ in the $x y$-plane. Then

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is an exact equation in \mathcal{R} if and only if

$$
M_{y}(x, y)=N_{x}(x, y)
$$

Notice that this applies to our previous example.

Exercise

Check whether each of the following is exact. If it is, then find the solution.
(1) $(2 x+3)+(2 y-2) y^{\prime}=0$.
(2) $\left(3 x^{2}-2 x y+2\right) d x+\left(6 y^{2}-x^{2}+3\right) d y=0$
(3) $(2 x+4 y)+(2 x-2 y) y^{\prime}=0$

Summary

In this module we have studied three types of first order equations:

- First order linear equations
- Separable equations
- Exact equations

What makes these equations special is that solving them essentially boils down to computing an appropriate integral.

