Math 23: Quiz

May 18, 2018

NAME:	Solutions	ang pananakan naga kanang maga pang maga pang banang banang pang pang pang pang pang pang pang
SECTION (check one box):	Section 1 (Kocyigit 11:30)	
	Section 2 (Kocyigit 12:50)	
Instructions:		
1. Wait for signal to begin.		
Write your name in the selong to.	space provided, and check one be	ox to indicate which section of the course yo
3. Please turn off cell phon	es or other electronic devices which	h may be disruptive.
 Unless otherwise stated, you not be graded. Work that it 	ou must justify your solutions to is scratched out will not be graded.	o receive full credit. Work that is illegible may
It is fine to leave your answ be easily simplified (such a	wer in a form such as $\ln(.02)$ or $\sqrt{23}$ s $e^{\ln(.02)}$ or $\cos(\pi)$ or $(3-2)$), you s	$\overline{39}$ or (385)(13 ³). However, if an expression car should simplify it.
 This exam is closed book It is a violation of the hono for clarification on problem 	or code to give or receive help on th	external resource. You may use calculators. his exam. However, you may ask the instructor
 In True/False questions circ then write N/A and expla answer. 	cle true, false or if you think the give in. Unless the question states "No	en information is not sufficient for a conclusion o explanation needed" you must explain your
8. If you use a theorem you sl	nould check (and write clearly) whe	ther the conditions of the theorem hold.
Honor statement: I have neith are my own work.	er given nor received any help on t	this exam, and I attest that all of the answers
Signature:		

1. Given a homogeneous system

$$x' = P(t)x \tag{H}$$

where P(t) is a $2x^2$ matrix valued continuous function on $t \in \mathbb{R}$. Answer the below questions.

(a) How many solutions of (H) can satisfy the initial conditions $x(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $x'(0) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$?

Circle one:

(One or no solutions)

(exactly one)

(none or infinitely many)

(none)

Explain: x'=P(+)x, x(0)=(1) has a uneque sola. say y(+).

If (3) coincides with y'ld then given publish has one solon oftenie no solon.

(b) How many solutions of (H) can satisfy the initial conditions $x(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$?

Circle one:

(One or no solutions)

(exactly one)

(none or infinitely many)

(infinitely many)

Explain: By uniqueren theorem since P(t) is continuous

(c) Suppose that P(t) is a constant real matrix with an eigenvalue 2i and corresponding eigenvector $\begin{pmatrix} i \\ 1 \end{pmatrix}$

Write the general solution of (H). If it is not possible to write from the given information then explain why.

Answer: $y(t) = G(\frac{-\sin 2t}{\cos 2t}) + G(\frac{\cos 2t}{\sin 2t})$ in \mathbb{R}

complex solv: (cos2t+tsin2t) [i] = (-sin2t+icos2t) = (sin2t) + i(cos2t)

Note: also ok. to gre ger som in (: 4et(i)+ &e2it(i)

(d) In part (c) if P(t) is a constant <u>complex</u> valued matrix with an eigenvalue 2i and eigenvector $\begin{pmatrix} i \\ 1 \end{pmatrix}$ will

your answer change? Explain why.

Answer: Yes. if PIt) is complex it is not possible to write good soln. From the given indometton Become expending / departed sold don't come in complex conjugate pairs. 2/3

2. Suppose P(t) is a $2x^2$ matrix valued continuous function on $t \in \mathbb{R}$, and let $x^{(1)}$ be a solution to

$$x' = P(t)x + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{1}$$

such that $x^{(1)}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Let $x^{(2)}$ and $x^{(3)}$ be solutions to the corresponding homogeneous system

$$x' = P(t)x \tag{2}$$

such that $x^{(2)}(0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ and $x^{(3)}(0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$. Find a solution x to the non-homogeneous system (1) that satisfies

$$x(0) = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$
 in terms of $x^{(1)}$, $x^{(2)}$, and $x^{(3)}$.

Answer: $\chi(t) = \frac{h}{3} \chi^{(2)} + \frac{6}{h} \chi^{(3)} + \chi^{(1)}$ gen soln: $\chi(t) = \alpha \chi^{(2)} + \beta \chi^{(3)} + \chi^{(1)}$

$$\Rightarrow \begin{pmatrix} 4 \\ 6 \end{pmatrix} = X(0) = \alpha \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 9 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \alpha = 4/3$$

$$\beta = 6/4$$

3. Circle true or false. If the statement can't be concluded from the given information write N/A. No expla-

$$(\Gamma)$$
/ F] If y_1 and y_2 are solutions of the equation

$$y' = \cos(t^2)y + t$$

and if the graphs of y_1 and y_2 intersect at some point then $y_1(t) = y_2(t)$ for all t.

$$y'' + ty' + \sin(t)y = e^{t^2}$$

whose graphs intersect each other at origin.