Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions

1. [20 points] TRUE or FALSE? You do not need to justify your answer.
(a) [3 points] Critical points or equilibrium points for a first order ordinary differential equation $y^{\prime}(t)=f(t, y)$ are those points where the solution is zero or where the slope of the solution is a constant everywhere.
FALSE.
(b) [3 points] The ODE $\frac{d y}{d t}-t y+t=(y-1)(y-t)$ is autonomous.

TRUE
(c) [3 points] There is a solution to the ODE $y^{\prime \prime}+3 y^{\prime}+y=\cos 6 t$ of the form $y_{p}(t)=A \cos 6 t$. FALSE
(d) [3 points] The differential equation $y^{\prime \prime}+t^{2} y^{\prime}-y=3$ is linear. TRUE
(e) [3 points] If y_{1} and y_{2} are two solutions of a nonhomogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=$ $f(x)$, then their difference is a solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
TRUE
(f) [5 points] If $f(x)$ is continuous everywhere, then there exists a unique solution to the following initial value problem.

$$
f(x) y^{\prime}=y, \quad y(0)=0
$$

FALSE

2. [10 points] If $2 x y^{3}+3 y \cos (x y)+\left(c x^{2} y^{2}+3 x \cos (x y)\right) y^{\prime}=0$ is an exact equation, what is the value of c ?
Solution: An exact equation is one of form $M(x, y)+N(x, y) y^{\prime}=0$ such that $M_{y}=N_{x}$. In this example, we let $M=2 x y^{3}+3 y \cos (x y)$ and $N=c x^{2} y^{2}+3 x \cos (x y)$, and compute $M_{y}=6 x y^{2}+3 \cos (x y)-3 x y \sin (x y)$ and $N_{x}=2 c x y^{2}+3 \cos (x y)-3 x y \sin (x y)$. For M_{y} and N_{x} to be equal, it must be that $c=3$.
3. [10 points] Find the general solution of the differential equation

$$
y^{(4)}-16 y=0
$$

Solution: The characteristic equation here is $r^{4}-16=0$. The left hand side factors as $\left(r^{2}-4\right)\left(r^{2}+4\right)=(r+2)(r-2)(r+2 i)(r-2 i)$, so the roots are $r=2,-2,2 i,-2 i$. Thus, the general solution to the differential equation is

$$
y=C_{1} e^{2 t}+C_{2} e^{-2 t}+C_{3} \cos (2 t)+C_{4} \sin (2 t)
$$

4. [10 points] Find a differential equation with general solution

$$
y=C_{1} e^{-2 t}+C_{2} e^{t}+C_{3} e^{3 t}
$$

Solution: Working our way backwards, this is the general solution to an ODE with characteristic equation with roots $r=-2,1,3$ (with no repetition). So the characteristic equation is $(r+2)(r-1)(r-3)=0$, i.e. $r^{3}-2 r^{2}-5 r+6=0$. This corresponds to the homogeneous equation

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

5. [15 points] Solve the differential equation

$$
y y^{\prime}=y^{2}+t
$$

by making the substitution $u=y^{2}+t$.
Solution: Since $u=y^{2}+t$, we get that

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}+1
$$

or if we just write $u^{\prime}=\mathrm{d} u / \mathrm{d} t$ and $y^{\prime}=\mathrm{d} y / \mathrm{d} t$, then $u^{\prime}=2 y y^{\prime}+1$, so $y y^{\prime}=\left(u^{\prime}-1\right) / 2$. Substituting in the differential equation, we get

$$
\frac{u^{\prime}-1}{2}=u
$$

which in standard form is

$$
u^{\prime}-2 u=1
$$

This is a linear first order equation, the integrating factor is $\mu(t)=e^{-2 t}$, so the general solution is

$$
u=\frac{\int e^{-2 t}}{e^{-2 t}}=\frac{-\frac{1}{2} e^{-2 t}+C}{e^{-2 t}}=-\frac{1}{2}+C e^{2 t}
$$

Substituting back, we get

$$
y^{2}+t=-\frac{1}{2}+C e^{2 t}
$$

so

$$
y= \pm \sqrt{-\frac{1}{2}+C e^{2 t}-t}
$$

6. [15 points] Match the following differential equations to the general solution graphs:
(a) $y^{\prime}=2(y-1)(y-3)$

(b) $y^{\prime \prime}-2 t+5=0$
A
(c) $y^{\prime \prime}+\frac{y^{\prime}}{2}+7=0$

A

B
7. [20 points] Consider the differential equation

$$
y^{\prime \prime}+b y^{\prime}+16 y=0
$$

(a) For which value(s) of b does the solution
(i) decay rapidly to 0 as $t \rightarrow \infty$
(ii) oscillate regardless of t value
(iii) decay while oscillating

Solution:

The roots of the characteristic equation $r^{2}+b r+16=0$ lead us to the solution of the given ODE. Roots are $r_{1}=\frac{-b}{2}+\frac{\sqrt{b^{2}-64}}{2}$ and $r_{2}=\frac{-b}{2}-\frac{\sqrt{b^{2}-64}}{2}$. Therefore the general solution is given by

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

when $r_{1} \neq r_{2}$, that is when $b \neq 8,-8 . r_{1}, r_{2}$ may be real or complex. We need to examine the following regions separately
i. $b>8: r_{1}, r_{2}$ real, unequal and <0. In this case the solution goes to 0 rapidly as $t \rightarrow \infty$.
ii. $b<-8 . r_{1}, r_{2}$ real and unequal and >0. In this case the solution grows rapidly as $t \rightarrow \infty$.
iii. $b= \pm 8$: The discriminant is $=0$, repeated roots. Solution is given by $y(t)=$ $c_{1} e^{\frac{-b t}{2}}+c_{2} t e^{\frac{-b t}{2}}$. If $b=8$ and assuming $c_{1}, c_{2}>0$ the solution increases until $t=\frac{2}{b}-\frac{b c_{1}}{2 c_{2}}$ and then goes to 0 rapidly. Depending on the sign of c_{1}, c_{2} the solution may decrease for a bit and then go to ∞ rapidly. If $b=-8$ solution $\rightarrow \infty$ as $t \rightarrow \infty$.
iv. $-8<b<0$: In this case $\frac{-b}{2}>0$, the discriminant is negative yielding complex values. The solution is of the form $c_{1} e^{\frac{-b}{2} t} \cos \alpha t+c_{2} e^{\frac{-b}{2} t} \sin \alpha t$. The solution grows while oscillating as $t \rightarrow \infty$.
v. $0<b<8$; In this case $\frac{-b}{2}<0$, the discriminant is negative yielding complex values. The solution is of the form $c_{1} e^{\frac{-b}{2} t} \cos \alpha t+c_{2} e^{\frac{-b}{2} t} \sin \alpha t$. The solution decays to 0 while oscillating as $t \rightarrow \infty$.
vi. $b=0: r_{1}, r_{2}$ are complex conjugates of each other. Solution is of the form $c_{1} \cos \alpha t+$ $c_{2} \sin \alpha t$. These oscillate forever.

Putting everything together we get
i) For $b \geq 8$ solution $\rightarrow 0$ as $t \rightarrow \infty$.
ii) When $b=0$ solution oscillates regardless of t value.
iii) When $0<b<8$ solution decays to 0 while oscillating.
(b) For $b=10$ and $y(0)=0, y^{\prime}(0)=6$, solve the initial value problem.

Solution:

Roots of the characteristic equation are $-2,-8$. So general solution $y_{c}(t)$ is given by $c_{1} e^{-2 t}+c_{2} e^{-8 t}$. Plugging in Initial conditions, we get:

$$
\begin{gathered}
y(0)=c_{1}+c_{2}=0 \\
y^{\prime}(0)=-2 c_{1}-8 c_{2}=6
\end{gathered}
$$

solving the above simultaneously we get $c_{1}=1, c_{2}=-1$. Our solution is therefore $y(t)=e^{-2 t}-e^{-8 t}$.

