Math 23 Diff Eq: In-class Midterm

65 minutes, 65 points. Answer all five questions, giving as much explanation as you have time for. No calculator needed; no algebra-capable ones allowed.

1. [10 points] Find the general solution to $t y^{\prime}+2 y=3 t-2$, for $t>0$. Is the $t \rightarrow \infty$ behavior stable or unstable? To what, if any, function of t is this solution asymptotic?
2. [8 points] Find the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=t$
3. [21 points] Solve the following initial-value problems. In each case explain why your solution is the only solution, or find another solution (NB 4 points are reserved for this in each case so put in corresponding detail).
(a) $y^{\prime}=t y^{1 / 2}$ with $y(0)=0$.
(b) $y^{2}+(2 x y+1) y^{\prime}=0$ with $y(0)=1$. (Remember to explain or find another solution as before...)
4. [10 points]
(a) Solve the initial-value problem $y^{\prime \prime}+y=\cos t$ with $y(0)=0$ and $y^{\prime}(0)=0$. Note this is a driven mass-spring system released from rest.
(b) What is the domain of t over which your solution is guaranteed to exist? (explain)
5. [16 points] Consider $y^{\prime \prime}-x^{2} y=0$.
(a) Is $x_{0}=0$ a regular point? (explain your answer)
(b) Find the general power-series solution about $x_{0}=0$ writing the answer in the form $c_{1} y_{1}(x)+$ $c_{2} y_{2}(x)$, where only the first 3 terms each of y_{1} and y_{2} need be given.
(c) Demonstrate that the y_{1} and y_{2} you found form a fundamental set of solutions.
(d) What is the most you can state about the radius of convergence of the series?
