Math 23, Spring 2017

Edgar Costa
April 14, 2017
Dartmouth College

Recall: Homogeneous equations with constant coefficients

Definition

To the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad a, b, c \mathbb{R}
$$

we associate a characteristic equation

$$
a r^{2}+b r+c=0
$$

If the characteristic equation has

1. two different real roots: $r_{1}, r_{2} \in \mathbb{R} \Rightarrow y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

Done!
2. a double root: $r \in \mathbb{R} \Rightarrow y=c_{1} e^{r t}+c_{2} t e^{r t}$ Why?
3. two complex roots: $\alpha \pm i \beta \in \mathbb{C} \Rightarrow y=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)$ Why?

Euler's identity

$$
e^{\alpha+i \beta}=e^{\alpha}(\cos \beta+i \sin \beta), \quad \alpha, \beta \in \mathbb{R}
$$

Claim

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{(\alpha+i \beta) t}=(\alpha+i \beta) e^{(\alpha+i \beta) t}
$$

- If $r=\alpha+i \beta$ is a root, then $e^{(\alpha+i \beta) t}$ also satisfies the differential equation. (we only need $\left(e^{r t}\right)^{\prime}=r e^{r t}$)
- If $r=\alpha+i \beta$ is a root, then $\alpha-i \beta$ is also a root!

Complex roots

If $\alpha \pm i \beta$ are roots to the characteristic equation, then we have two complex solutions $e^{(\alpha \pm i \beta) t}$.
We would like two real solutions.
How do we get $y=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)$?

$$
\begin{aligned}
& \widetilde{y_{1}}=e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& \widetilde{y_{2}}=e^{(\alpha-i \beta) t}=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=\frac{\tilde{y_{1}}+\tilde{y_{2}}}{2}=? \\
& y_{2}=\frac{\tilde{y_{1}}-\tilde{y_{2}}}{2 i}=?
\end{aligned}
$$

Complex roots

$$
\begin{array}{rlrl}
\tilde{y_{1}}=e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) & \tilde{y_{2}}=e^{(\alpha-i \beta) t} & =e^{\alpha t}(\cos (\beta t)-i \sin (\beta t)) \\
y_{1}=\frac{\tilde{y_{1}}+\tilde{y_{2}}}{2}=e^{\alpha t} \cos \beta t & \left(=\operatorname{Real}\left(\tilde{y_{1}}\right)\right) \\
y_{2}=\frac{\widetilde{y_{1}}-\tilde{y_{2}}}{2 i}=e^{\alpha t} \sin \beta t & \left(=\operatorname{Imag}\left(\tilde{y_{1}}\right)\right)
\end{array}
$$

These are also two solutions, but now real!
Q: Do they form a fundamental solution set?
A: Yes, we already checked that $W\left(\widetilde{y_{1}}, \tilde{y_{2}}\right)(t) \neq 0$ as long $r_{1}=\alpha+i \beta \neq \alpha-i \beta=r_{2}$ and

$$
W\left(y_{1}, y_{2}\right)(t)=\frac{-2}{4 i} W\left(\tilde{y_{1}}, \tilde{y_{2}}\right)(t) \quad \text { check it! }
$$

Exercise 18

Solve the IVP: $\left\{\begin{array}{l}y^{\prime \prime}+4 y^{\prime}+5 y=0 \\ y(0)=1 \\ y^{\prime}(0)=0\end{array}\right.$

1. $r^{2}+4 r+5=0 \rightsquigarrow r=\frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm i$
2. $y_{1}(t)=e^{-2 t} \cos (t)$

$$
\begin{aligned}
& y_{2}(t)=e^{-2 t} \sin (t) \\
& y(t)=c_{1} e^{-2 t} \cos (t)+c_{2} e^{-2 t} \sin (t)
\end{aligned}
$$

3. Solve for c_{1} and c_{2}
4. $y(t)=e^{-2 t} \cos (t)+2 e^{-2 t} \sin (t)$
5. What happens as $t \rightarrow+\infty$

What about multiple roots?

If the characteristic equation $a r^{2}+b r+c=0$. has a double root $r \in \mathbb{R}$, then

$$
\begin{aligned}
& y_{1}=e^{r t} \\
& y_{2}=t e^{r t}
\end{aligned}
$$

Where did did y_{2} come from?

- Guessing? Only works some times.
- A: Using y_{1} we will reduce the order of our ODE.

Reduction of order method

Let y_{1} be a solution to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Let's search for $y_{2}(t)=v(t) y_{1}(t)$ with $v(t)$ arbitrary.
Plugin y_{2}, y_{2}^{\prime} and $y_{2}^{\prime \prime}$ in the original ODE. What do you get?

$$
v^{\prime \prime} y_{1}+v^{\prime}\left(2 y_{1}^{\prime}+p y_{1}\right)=0
$$

$$
u^{\prime} y_{1}+u\left(2 y_{1}^{\prime}+p y_{1}\right)=0, \quad u=v^{\prime}
$$

and we know how to solve for u, and $v=\int u$

Reduction of order method

$$
y_{2}=v y_{1} \text {, where } u^{\prime}=v \text { and } u^{\prime} y_{1}+u\left(2 y_{1}^{\prime}+p y_{1}\right)=0
$$

Example

Solve $y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0$
Exercise 3.4.24
Solve $t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0$, given $y_{1}=t$

Exercise 16

a) Find a solution to the initial value problem as a function of b

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=0, \quad y(0)=2, \quad y^{\prime}(0)=b
$$

b) Determine a critical value of b that separates solutions that grow positively from those that eventually grow negatively.

$$
\begin{gathered}
y(t)=e^{t / 2}(b t-t+2) \\
y^{\prime}(t)=\frac{1}{2} e^{t / 2}((b-1) t+2 b)
\end{gathered}
$$

