Math 23, Spring 2017

Edgar Costa
April 10, 2017
Dartmouth College

Second order linear equations

- Second order equation

$$
\Rightarrow y^{\prime \prime}=f\left(t, y^{\prime},\right)
$$

- Second order linear equation

$$
\Rightarrow y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Homogeneous equations and initial conditions

Definition

A second order linear equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is called homogeneous if $g(t)=0$.
Otherwise it is called nonhomogeneous.
Note that when specifying an IVP for a second-order equation, we have to give two initial conditions, both the value of the y and y^{\prime} :

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} .
$$

For example, to solve $y^{\prime \prime}=f(t)$ you will need to integrate the $f(t)$ and $\int_{t_{0}}^{t} f(s)$ ds, thus you will need to deal with two arbitrary constants.

Existence and uniqueness

Theorem 3.2.1

Consider the IVP

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where p, q, g are continuous on (α, β) and $t_{0} \in(\alpha, \beta)$. Then, there is exactly one solution $y(t)$ of this problem, and the solution is defined on the interval (α, β).

- The IVP has a solution!
- The solution is unique!
- The unique solution is defined (at least) on the interval (α, β), where is at least twice differentiable

Homogeneous equations with constant coefficients

Definition

To the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad a, b, c \mathbb{R}
$$

we associate a characteristic equation

$$
a r^{2}+b r+c=0
$$

If the characteristic equation has

1. two different real roots $r_{1}, r_{2} \in \mathbb{R} \Rightarrow y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}, C_{1}, C_{2} \in \mathbb{R}$
2. double root $r \in \mathbb{R} \Rightarrow y=C_{1} e^{r t}+C_{2} t e^{r t}, C_{1}, C_{2} \in \mathbb{R}$
3. two complex roots $r=\alpha \pm i \beta \Rightarrow y=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) C_{1}, C_{2} \in \mathbb{R}$

Why?

1st ingredient

If the characteristic equation associated to $a y^{\prime \prime}+b y^{\prime}+c y=0$ has

1. two different real roots $r_{1}, r_{2} \in \mathbb{R} \Rightarrow y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}, C_{1}, C_{2} \in \mathbb{R}$
2. double root $r \in \mathbb{R} \Rightarrow y=C_{1} e^{r t}+C_{2} t e^{r t}, C_{1}, C_{2} \in \mathbb{R}$
3. two complex roots $r=\alpha \pm i \beta \Rightarrow y=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) C_{1}, C_{2} \in \mathbb{R}$

Theorem

If \tilde{r} is a root of the characteristic equation, then $y(t)=e^{\tilde{r} t}$ is a solution.

Corollary

$a r^{2}+b t+c=0$ has two different roots, r_{1} and r_{2}, then $e^{r_{1} t}$ and $e^{r_{2} t}$ are both solutions.

2nd ingredient

Theorem 3.2.2

If y_{1} and y_{2} are solutions of the differential equation

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0
$$

then the linear combination $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any constants c_{1}, c_{2}.

Corollary

$a r^{2}+b t+c=0$ has two different roots, r_{1} and r_{2}, then $e^{r_{1} t}$ and $e^{r_{2} t}$ are both solutions. Furthermore, $C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is also a solution for any $C_{1}, C_{2} \in \mathbb{R}$.

3rd ingredient

Question

Can we solve any IVP?
In other words, can we solve $a y^{\prime \prime}+b y^{\prime}+c y=0$ for any set of initial conditions $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$?

If so, the solution will be unique! (Why?) In case 1 ., we need to be able to find C_{1} and C_{2} such that

$$
\begin{cases}C_{1} e^{r_{1} t_{0}}+C_{2} e^{r_{2} t_{0}} & =y_{0} \\ C_{1} r_{1} e^{r_{1} t_{0}}+C_{2} r_{2} e^{r_{2} t_{0}} & =y_{0}^{\prime}\end{cases}
$$

Can we always do that?

Determinant (p. 148)

$$
\left\{\begin{array} { l }
{ \underbrace { C _ { 1 } } _ { x } \underbrace { e ^ { r _ { 1 } t _ { 0 } } } _ { a } + \underbrace { C _ { 2 } } _ { y } \underbrace { e ^ { r _ { 2 } t _ { 0 } } } _ { b } = \underbrace { y _ { 0 } } _ { e } } \\
{ \underbrace { C _ { 1 } } _ { x } \underbrace { r _ { 1 } e ^ { r _ { 1 } t _ { 0 } } } _ { c } + \underbrace { C _ { 2 } } _ { y } \underbrace { r _ { 2 } e ^ { r _ { 2 } t _ { 0 } } } _ { d } = \underbrace { y _ { 0 } ^ { \prime } } _ { f } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a x+b y=e \\
c x+d y=f
\end{array}\right.\right.
$$

Solving the RHS algebraically we get

$$
\begin{aligned}
& x=\frac{1}{a d-b c}(d e-b f) \\
& y=\frac{1}{a d-b c}(a f-c e)
\end{aligned}
$$

For generic e and f we need to be able to divide by $a d-b c$ to solve the system.

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Determinant

Other way to look at it. Each equation in

$$
\left\{\begin{array}{l}
a x+b y=e \\
c x+d y=f
\end{array}\right.
$$

represents a line in the $x y$-plane.
Thus, we are trying to find where they intersect.

- If $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq 0$, the lines are not parallel and there is only one solution.
- If $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq 0$, the lines are parallel.
- The lines are parallel and distinct \rightsquigarrow no solution.
- Both equations represent the same line \rightsquigarrow infinitely many solutions.

Back to solving the IVP

$$
\begin{aligned}
& \left\{\begin{array}{l}
C_{1} e^{r_{1} t_{0}}+C_{2} e^{r_{2} t_{0}}=y_{0} \\
C_{1} r_{1} e^{r_{1} t_{0}}+C_{2} r_{2} e^{r_{2} t_{0}}=y_{0}^{\prime}
\end{array} \quad \text { has a solution if and only if } \operatorname{det}\left(\begin{array}{cc}
e^{r_{1} t_{0}} & e^{r_{2} t_{0}} \\
r_{1} e^{r_{1} t_{0}} & r_{2} e^{r_{2} t_{0}}
\end{array}\right) \neq 0\right. \\
& \operatorname{det}\left(\begin{array}{cc}
e^{r_{1} t_{0}} & e^{r_{2} t_{0}} \\
r_{1} e^{r_{1} t_{0}} & r_{2} e^{r_{2} t_{0}}
\end{array}\right)=\underbrace{e^{\left(r_{1}+r_{2}\right) t_{0}}}_{\neq 0} \underbrace{\left(r_{1}-r_{2}\right)}_{\neq 0} \neq 0
\end{aligned}
$$

Can we generalize this?

Wronkskian

Definition

Let y_{1} and y_{2} be two solutions of the homogeneous ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

The Wronkskian of these solutions is a function in t

$$
W\left(y_{1}, y_{2}\right)(t):=\operatorname{det}\left(\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

Exercise 20 (practice)

$W(f, g)(t)=t \cos t-\sin t ;$
$u=f+3 g$ and $v=f-g$.

$$
\text { Find } W(u, v)(t)
$$

Theorem 3.2.3

Theorem 3.2.3
Let $y_{1}(t)$ and $y_{2}(t)$ be two solutions of the homogeneous ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

that are defined at t_{0}. If $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$, then every solution to the initial value problem

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

can solved in the form

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

