## Math 23, Spring 2017

Edgar Costa
April 7th, 2017
Dartmouth College

## Random stuff

## Engineering Open House <br> Today April 7, 2017, 5:30-8:00pm <br> Thayer School of Engineering

## Exact equations

## Definition

An equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact, if there is a $\psi$ such that there exists a $\psi(x, y)$ such that

$$
M=\frac{\partial \psi}{\partial x} \quad N=\frac{\partial \psi}{\partial y}
$$

Let $\phi(x)$ be a curve satisfying $\psi(x, \phi(x))=C$ for some constant $C$. Then $y=\phi(x)$ is a solution to the original ODE.

- Check it!


## Exact equations, Exercise 1

## Definition

An equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact, if there is a $\psi$ such that there exists a $\psi(x, y)$ such that

$$
M=\frac{\partial \psi}{\partial x} \quad N=\frac{\partial \psi}{\partial y} .
$$

## Exercise 1

$$
(2 x+3)+(2 y-2) y^{\prime}=0
$$

Find $M, N$, and $\Psi$.

## Main theorem

## Theorem 2.6.1

Let the functions $M, N, M_{y}:=\frac{\partial M}{\partial y}, N_{x}:=\frac{\partial N}{\partial x}$ be continuous on the rectangular region $R=(\alpha, \beta) \times(\gamma, \delta)$. Then

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is exact on $R$ if and only if

$$
\begin{equation*}
M_{y}(x, y)=N_{x}(x, y) \tag{1}
\end{equation*}
$$

at all points $(x, y)$ in $R$. In other words, there exists a function $\psi$ such that

$$
\begin{equation*}
\psi_{x}(x, y)=M(x, y) \quad \psi_{y}(x, y)=N(x, y) \tag{2}
\end{equation*}
$$

if and only if (1) holds.

## Exact equations, Exercise 1

## Exercise 1

Solve the IVP

$$
(2 x+3)+(2 y-2) y^{\prime}=0, \quad y(1)=3
$$

## Integration factors

- If $\frac{M_{y}-N_{x}}{N}$ only depends on $x$, then

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

- If $\frac{N_{x}-M_{y}}{M}$ only depends on $y$, then

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{N_{x}-M_{y}}{M}
$$

## Exercise 30

Solve the ODE

$$
4 \frac{x^{3}}{y^{2}}+3 \frac{1}{y}+\left(3 \frac{x}{y^{2}}+4 y\right) \frac{d y}{d x}=0
$$

## Integration factors

- If $\frac{M_{y}-N_{x}}{N}$ only depends on $x$, then

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

- If $\frac{N_{x}-M_{y}}{M}$ only depends on $y$, then

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{N_{x}-M_{y}}{M}
$$

## Exercise 26

Solve the ODE

$$
y^{\prime}=e^{2 x}+y-1
$$

## Generic integration factors

- Exercise 24 covers $\mu=\mu(x y)$
- What if $\mu=\mu\left(x^{2} y^{3}\right)$ ?


## Generic integration factors

- Exercise 24 covers $\mu=\mu(x y)$
-What if $\mu=\mu\left(x^{2} y^{3}\right)$ ?
$\rightsquigarrow \frac{\mu^{\prime}\left(x^{2} y^{3}\right)}{\mu\left(x^{2} y^{3}\right)}=\frac{N_{x}-M_{y}}{M 3 x^{2} y^{2}-N 2 x y^{3}}$ must be a function of $x^{2} y^{3}$


## Generic integration factors

- Exercise 24 covers $\mu=\mu(x y)$
-What if $\mu=\mu\left(x^{2} y^{3}\right)$ ?
$\rightsquigarrow \frac{\mu^{\prime}\left(x^{2} y^{3}\right)}{\mu\left(x^{2} y^{3}\right)}=\frac{N_{x}-M_{y}}{M 3 x^{2} y^{2}-N 2 x y^{3}}$ must be a function of $x^{2} y^{3}$
- Solve the ODE

$$
4 x y^{2}+5 x^{2} y y^{\prime}=0
$$

