Math 23, Spring 2017

Edgar Costa
April 3rd, 2017
Dartmouth College

Exercise 2.4.32

Solve the IVP:

$$
y^{\prime}+2 y=g(t)=\left\{\begin{array}{ll}
1, & 0 \leq t \leq 1 \\
0, & t>1
\end{array}, \quad y(0)=0\right.
$$

- One can think that someone pulled a switch at $t=1$

1. Solve $y_{1}^{\prime}+2 y_{1}=0, \quad y_{1}(0)=0$
2. Solve $y_{2} \prime+2 y_{2}=1, \quad y_{2}(1)=y_{1}(1)$
3. Then $y(t)=\left\{\begin{array}{ll}y_{1}(t) & 0 \leq t \leq 1 \\ y_{2}(t) & t>1\end{array}\right.$ is a solution for the IVP, even though $y^{\prime}(t)$ is not continuous.

Three important steps in modeling

- Construction of the model
- Analysis of the model
- Comparison with experiment or observation

Exercise 2.3.1

Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g / L. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of $2 \mathrm{~L} / \mathrm{min}$, the well-stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.

Exercise 2.3.1 - Spin-off \# 1

Exercise 2.3.1

Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g / L. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of $2 \mathrm{~L} / \mathrm{min}$, the well-stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.

Spin-off \# 1

Now assume that the fluid coming in has $0.5 \mathrm{~g} / \mathrm{L}$ how does this change the behaviour?

Exercise 2.3.1 - Spin-off \# 2

Spin-off \# 2

Now assume there are 2 tubes coming in

- $0.5 \mathrm{~g} / \mathrm{L}$ at the $2 \mathrm{~L} / \mathrm{min}$
- $0.1 \mathrm{~g} / \mathrm{L}$ at the rate $1 \mathrm{~L} / \mathrm{min}$

There is only one tube coming out at the rate $2 \mathrm{~L} / \mathrm{min}$. The tank's max capacity is 300 L , and initially it has 200L of solution with concentration $1 \mathrm{~g} / \mathrm{L}$. Find the mass of dye at the moment when the tank overflows.

Compound Interest, Exercise 9

Exercise 2.3.9

A certain college graduate borrows $\$ 8000$ to buy a car. The lender charges interest at an annual rate of 10%. Assuming that interest is compounded continuously and that the borrower makes payments continuously at a constant annual rate k, determine the payment rate k that is required to pay off the loan in 3 years. Also determine how much interest is paid during the 3 -year period.

