Math 23, Spring 2017

Edgar Costa
March 31st, 2017
Dartmouth College

Quick recap

Last time:

- We learned some vocabulary, ordinary/partial, linear/nonlinear, order, etc..
- We learned how to solve $y^{\prime}+p(t) y=g(t)$
- The general solutions looks like

$$
\begin{aligned}
& y(t)=\frac{1}{\mu(t)} \int \mu(t) g(t) \mathrm{d} t \\
& \text { with } \mu(t)=e^{\int p(t) \mathrm{d} t}
\end{aligned}
$$

Today:

- Separable equations (we already have seen these ones a couple of times...)
- Existence and uniqueness of solutions

Separable Equations

A general first order ODE can be written in the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

for some functions M, N.
If M is a function of only x and N is a function of only y, then

$$
M(x)+N(y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

Then

$$
\int N(y) \mathrm{d} y=-\int M(x) \mathrm{d} x
$$

This is known as separable equation, as we have separated the variables x and y.

Separable equations, Example

Exercise 2.2.23

Solve the IVP

$$
y^{\prime}=2 y^{2}+x y^{2}, \quad y(0)=1
$$

and determine where the solution attains minimum value.

- Order? Linear/Nonlinear? Separable?

$$
y(x)=-1 /\left(2 x+\frac{x^{2}}{2}-1\right)
$$

- To find the minimum we either start to take derivatives of $y(x)$ or we use the equation that was given to us!
- local minimum at $x=-2$

A classical and important example

Example 2.4.3

Solve the IVP : $y^{\prime}=y^{1 / 3}, \quad y(0)=0$
: Order? Linear/Nonlinear? Separable?

$$
\begin{aligned}
y^{\prime}=y^{1 / 3} & \Longrightarrow \int y^{-1 / 3} d y=\int d x \\
\Longrightarrow \frac{3}{2} y^{2 / 3}=x+C & \Longrightarrow y(x)= \pm \sqrt{\left(\frac{2}{3}(x+C)\right)^{3}}
\end{aligned}
$$

- $y(0)=0= \pm \sqrt{\left(\frac{2}{3}(0+C)\right)^{3}} \Rightarrow C=0$
- We missed one obvious solution! Which one?

A classical and important example

Example 2.4.3

Solve the IVP : $y^{\prime}=y^{1 / 3}, \quad y(0)=0$

We found three solutions to the IVP

1. $y(x)=0$
2. $y(x)=\sqrt{\left(\frac{2}{3} x\right)^{3}}$
3. $y(x)=-\sqrt{\left(\frac{2}{3} x\right)^{3}}$

Question

Are there more solutions?

A classical and important example

Example 2.4.3

Solve the IVP : $y^{\prime}=y^{1 / 3}, \quad y(0)=0$

For $x_{0}>0$ put

$$
y_{x_{0}}^{ \pm}(x)= \begin{cases}0 & x \leq x_{0} \\ \pm \sqrt{\left(\frac{2}{3}(x-x 0)\right)^{3}} & x>x_{0}\end{cases}
$$

Claim

All the functions $y_{x_{0}}^{ \pm}(x)$ are solutions to the IVP.

Existence and Uniqueness - linear ODEs

Theorem 2.4.1

Suppose the functions p, g are continuous on the interval (α, β) containing the point t_{0}. Then there exists a unique function $y(t)$ that satisfies the $D E$

$$
y^{\prime}+p(t) y=g(t)
$$

for each t in (α, β) and also satisfies the initial condition $y\left(t_{0}\right)=y_{0}$, where y_{0} is an arbitrary initial value.

Exercise 2.4.5

Determine the interval on which the solution of the IVP is certain to exist.

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=3
$$

Existence and Uniqueness - non-linear ODEs

Theorem 2.4.2

Suppose the functions $f(t, y)$ and $\frac{\partial f}{\partial y}(y, t)$ are continuous on some rectangle $(\alpha, \beta) \times(\gamma, \delta)$ containing the point $\left(t_{0}, y_{0}\right)$.

Then, in some interval $\left(t_{0}-h, t_{0}+h\right)$ contained in (α, β), there is a unique solution of the IVP

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Exercise 2.4.15

Solve the IVP

$$
y^{\prime}+y^{3}=0, \quad y(0)=y_{0}
$$

and determine how the interval where the solution exists depend on y_{0}.

Solution Exercise 2.4.15

- Linear or nonlinear?
- Theorem 2.4.1 does not apply here. Why?
- Theorem 2.4.2 does not say anything about the domain of definition of the solution (right?)
- However, Theorem 2.4.2 tells us that the solution will be unique around $t_{0}=0$
- Rewrite the DE as $\frac{-y^{\prime}}{y^{3}}=1$, and note that we lost a solution
- Thus $y(x)= \begin{cases} \pm \sqrt{\frac{1}{2(x+C)}}, & y_{0} \neq 0 \\ 0, & y_{0}=0\end{cases}$
- if $y_{0} \neq 0$, then $y(0)=y_{0}= \pm \sqrt{\frac{1}{2(0+C)}} \Rightarrow y_{0}^{2}=\frac{1}{2 C} \Rightarrow C=\frac{1}{2 y_{0}^{2}}$

Solution Exercise 2.4.15 Continued

$$
y(x)= \begin{cases}\sqrt{\frac{1}{2\left(x+\frac{1}{22_{0}^{2}}\right)}}, & y_{0}>0 \\ 0, & y_{0}=0 \\ -\sqrt{\frac{1}{2\left(x+\frac{1}{2 y_{0}^{2}}\right)},} & y_{0}<0\end{cases}
$$

- If $y_{0}=0, y(x)=0$ is defined in \mathbb{R}
- In the other two cases we need to ask for what x we have $2\left(x+\frac{1}{2 y_{0}^{2}}\right)>0$, which is

$$
x \in\left[-\frac{1}{2 y_{0}^{2}},+\infty\right)
$$

- Answer: if $y_{0} \neq 0$ the solution is defined on $\left[-\frac{1}{2 y_{0}^{2}},+\infty\right)$, for $y_{0}=0$, the solution is defined in \mathbb{R}

