Math 23, Spring 2017

Edgar Costa March 29th, 2017

Dartmouth College

Random stuff

- Tutorials: Su, Tu, Th : 7 pm 9 pm
- Homework: Due Wednesday's 3:30 pm
 - first one due next week
 - \cdot on the boxes on the 1st floor
- Office hours:
 - Costa's: M 4-5:30 ; W 4-5
 - Gelb's: M 2:30-4; F 2:30-3:30
- $\cdot\,$ I won't be around today for my Office Hours
- Today
 - §1.3 Classification of Differential Equations
 - §2.1 Solve linear ordinary DEs

Exercise 1.2.11

Draw the direction field of y' = y(4 - y).

Math 23, Spring 2017

 $y = \frac{4e^{4t}}{D + e^{4t}}$

Some vocabulary so we can describe different situations that arise

- Ordinary Differential Equations vs Partial Differential Equations
- What is a system of Differential Equations?
- Order of a Differential Equation
- Linear vs Nonlinear
- \cdot What is a solution

Definition

An **ordinary differential equation** (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives.

A **partial differential equation** (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.

If the function in the DE depends on just one variable \Rightarrow ODE. We have only considered ODEs so far.

•
$$\frac{dv(t)}{dt} = 10 - \frac{v(t)}{5}$$
 is an ODE, $v(t)$ only depends on t .
• $a^2 \frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial^2 u(x,t)}{\partial t^2}$ is a PDE, $u(x,t)$ depends on x and t .

We have only considered a single differential equation, sometimes there are models that involves several functions, all connected by DEs, known as **systems of DEs**.

For example,

$$\frac{dx}{dt} = ax - \alpha xy$$
$$\frac{dy}{dt} = -cy + \gamma xy$$

Definition

The **order** of a differential equation is the order of the highest derivative that appears in the equation.

• First order ODE:
$$\frac{dy}{dt} + \frac{2}{t}y = 4t$$

- Third order ODE: $y''' + 2e^ty'' + y'y = t^4$
- More generally, an n^{th} order ODE can always be put in the form

$$F(t, y, y', \ldots, y^{(n)}) = 0$$

for some function F. (Like degree of a polynomial.)

Linear vs nonlinear

Definition

An ordinary differential equation

```
F(t, y, y', \ldots, y^{(n)}) = 0
```

is **linear** if F is a linear function of the variables $y, y', \ldots, y^{(n)}$.

- $y' = y^2$ is nonlinear because y appears to the 2nd power.
- $y' = \sin y$ is also nonlinear. $\sin y$ is not a linear function in y.
- y' = ay + b is a linear ODE.
- In general linear ODE of order *n* is

$$a_n(t)y^{(n)} + \cdots + a_1(t)y' + a_0(t)y = g(t)$$
.

An ODE not of this form is called **nonlinear**.

Edgar Costa

Math 23, Spring 2017

Solutions

Definition

A solution to an ODE $F(t, y, ..., y^{(n)}) = 0$ on an interval (a, b) is a function y(t) that satisfies this equation (i.e., that makes it true) for all t in (a, b).

- It's important to keep track of the interval of definition of a solution!
- <u>Q</u>: Do all DEs have solutions? <u>A</u>: No, not necessarily. A silly example is $(y')^2 + 1 = 0$; this has no solution because $(y')^2 = -1$ is impossible in \mathbb{R} .
- <u>Q:</u> Can a DE have more than one solution?
 <u>A:</u> We have seen that this is often the case, since many solutions involve an arbitrary constant *C*, known as **general solutions**. We will talk more about "how many" solutions a DE can have later in the course.

Example 1

Solve

$$(4+t^2)\frac{dy}{dt} + 2ty = 4t$$

Exercise 13

Solve the Initial Value Problem (IVP)

$$y' - y = 2te^{2t}, \quad y(0) = 1$$

Exercise 16

Solve the IVP

$$y' + \frac{2}{t}y = \frac{\cos(t)}{t^2}, \quad y(\pi) = 0(t > 0)$$

Exercise 7

Solve

$$y' + 2ty = 2te^{-t^2}$$