Math 23, Spring 2017

Edgar Costa
March 29th, 2017
Dartmouth College

Random stuff

- Tutorials: Su, Tu, Th : 7 pm - 9 pm
- Homework: Due Wednesday's 3:30 pm
- first one due next week
- on the boxes on the 1st floor
- Office hours:
- Costa's: M 4-5:30 ; W 4-5
- Gelb's: M 2:30-4; F 2:30-3:30
- I won't be around today for my Office Hours
- Today
- §1.3 Classification of Differential Equations
- §2.1 Solve linear ordinary DEs

Exercise 1.2.11

Draw the direction field of $y^{\prime}=y(4-y)$.

$$
\frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{vs} y
$$

$$
y=\frac{4 e^{4 t}}{D+e^{4 t}} \quad \text { (general solution) }
$$

Classification of Differential Equations

Some vocabulary so we can describe different situations that arise

- Ordinary Differential Equations vs Partial Differential Equations
-What is a system of Differential Equations?
- Order of a Differential Equation
- Linear vs Nonlinear
- What is a solution

Ordinary vs Partial

Definition

An ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives.

A partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.

If the function in the $D E$ depends on just one variable \Rightarrow ODE. We have only considered ODEs so far.

- $\frac{d v(t)}{d t}=10-\frac{v(t)}{5}$ is an ODE, $v(t)$ only depends on t.
- $a^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{\partial^{2} u(x, t)}{\partial t^{2}}$ is a PDE, $u(x, t)$ depends on x and t.

System

We have only considered a single differential equation, sometimes there are models that involves several functions, all connected by DEs, known as systems of DEs.

For example,

$$
\begin{aligned}
& \frac{d x}{d t}=a x-\alpha x y \\
& \frac{d y}{d t}=-c y+\gamma x y
\end{aligned}
$$

Order

Definition

The order of a differential equation is the order of the highest derivative that appears in the equation.

- First order ODE: $\frac{d y}{d t}+\frac{2}{t} y=4 t$
- Third order ODE: $y^{\prime \prime \prime}+2 e^{t} y^{\prime \prime}+y^{\prime} y=t^{4}$
- More generally, an $n^{\text {th }}$ order ODE can always be put in the form

$$
F\left(t, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

for some function F. (Like degree of a polynomial.)

Linear vs nonlinear

Definition

An ordinary differential equation

$$
F\left(t, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

is linear if F is a linear function of the variables $y, y^{\prime}, \ldots, y^{(n)}$.

- $y^{\prime}=y^{2}$ is nonlinear because y appears to the 2nd power.
- $y^{\prime}=\sin y$ is also nonlinear. $\sin y$ is not a linear function in y.
- $y^{\prime}=a y+b$ is a linear ODE.
- In general linear ODE of order n is

$$
a_{n}(t) y^{(n)}+\cdots+a_{1}(t) y^{\prime}+a_{0}(t) y=g(t)
$$

An ODE not of this form is called nonlinear.

Solutions

Definition

A solution to an $\operatorname{ODE} F\left(t, y, \ldots, y^{(n)}\right)=0$ on an interval (a, b) is a function $y(t)$ that satisfies this equation (i.e., that makes it true) for all t in (a, b).

- It's important to keep track of the interval of definition of a solution!
- Q: Do all DEs have solutions?

A: No, not necessarily. A silly example is $\left(y^{\prime}\right)^{2}+1=0$; this has no solution because $\left(y^{\prime}\right)^{2}=-1$ is impossible in \mathbb{R}.

- Q: Can a DE have more than one solution?

A: We have seen that this is often the case, since many solutions involve an arbitrary constant C, known as general solutions. We will talk more about "how many" solutions a DE can have later in the course.

Solving linear ODEs

Example 1

Solve

$$
\left(4+t^{2}\right) \frac{d y}{d t}+2 t y=4 t
$$

Exercise 13

Solve the Initial Value Problem (IVP)

$$
y^{\prime}-y=2 t e^{2 t}, \quad y(0)=1
$$

Solving linear ODEs

Exercise 16

Solve the IVP

$$
y^{\prime}+\frac{2}{t} y=\frac{\cos (t)}{t^{2}}, \quad y(\pi)=0(t>0)
$$

Exercise 7

Solve

$$
y^{\prime}+2 t y=2 t e^{-t^{2}}
$$

