Math 23, Spring 2017

Edgar Costa
May 10, 2017
Dartmouth College

Solving homogeneous linear systems

$$
x^{\prime}=A \cdot x
$$

$X(t)=e^{\lambda t} v$ a solution $\Leftrightarrow v$ is an eigenvector and λ is its corresponding eigenvalue.
3 possible cases:
(A) All eigenvalues are real and distinct. \checkmark
(B) Some come in complex conjugate pairs \checkmark
(C) Some eigenvalues come with multiplicity greater than 1.

Very similar to solving $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Repeated eigenvalues

Example 0

Solve $X^{\prime}=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right) X$

1. Try using eigenvectors and eigenvalues.
2. Try solving one equation at a time.

Repeated eigenvalues

Example 0

Solve $X^{\prime}=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right) X$

1. Try using eigenvectors and eigenvalues.
2. Try solving one equation at a time.

Fact

If λ is a root of $\operatorname{det}(A-\lambda I)$ with multiplicity $j>0$.
The vector space of eigenvectors corresponding to λ can have dimension $<j$, i.e., we might not be able to find j independent eigenvectors.

Repeated eigenvalues

Example 0

Solve $X^{\prime}=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right) X$

1. Try using eigenvectors and eigenvalues.
2. Try solving one equation at a time.

Solution: $X(t)=c_{1} e^{\lambda t}\binom{1}{0}+c_{2} e^{\lambda t}\left(t\binom{1}{0}+\binom{0}{1}\right)$

Repeated eigenvalues

Example 0

Solve $X^{\prime}=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right) X$

1. Try using eigenvectors and eigenvalues.
2. Try solving one equation at a time.

Solution: $X(t)=c_{1} e^{\lambda t}\binom{1}{0}+c_{2} e^{\lambda t}\left(t\binom{1}{0}+\binom{0}{1}\right)$
$\cdot v=\binom{1}{0}$ is an eigenvector $\Leftrightarrow A v=\lambda v$

- $w=\binom{0}{1}$ is a generalized eigenvector $\Leftrightarrow A w=v+\lambda w$

Generalized eigenvectors (aka Secondary eigenvectors)

Definition

Given an eigenvector corresponding to $\lambda(A v=\lambda v)$, the generalized eigenvector w associated to v satisfies

$$
(A-\lambda I) w=v \Leftrightarrow A w=v+\lambda w
$$

Generalized eigenvectors (aka Secondary eigenvectors)

Definition

Given an eigenvector corresponding to $\lambda(A v=\lambda v)$, the generalized eigenvector w associated to v satisfies

$$
(A-\lambda I) w=v \Leftrightarrow A w=v+\lambda w
$$

$$
\begin{aligned}
\phi(t) & =e^{\lambda t} w+t e^{\lambda t} v \\
A \phi(t) & =e^{\lambda t}(A w+t A v) \\
& =e^{\lambda t}(\lambda w+v+\lambda t v) \\
& =\phi^{\prime}(t)
\end{aligned}
$$

Generalized eigenvectors (aka Secondary eigenvectors)

Definition

Given an eigenvector corresponding to $\lambda(A v=\lambda v)$, the generalized eigenvector w associated to v satisfies

$$
(A-\lambda I) w=v \Leftrightarrow A w=v+\lambda w
$$

$$
\begin{aligned}
\phi(t) & =e^{\lambda t} w+t e^{\lambda t} v \\
A \phi(t) & =e^{\lambda t}(A w+t A v) \\
& =e^{\lambda t}(\lambda w+v+\lambda t v) \\
& =\phi^{\prime}(t)
\end{aligned}
$$

Generalized eigenvectors (aka Secondary eigenvectors)

Definition

Given an eigenvector corresponding to $\lambda(A v=\lambda v)$, the generalized eigenvector w associated to v satisfies

$$
(A-\lambda I) w=v \Leftrightarrow A w=v+\lambda w
$$

Generalized eigenvectors (aka Secondary eigenvectors)

Definition

Given an eigenvector corresponding to $\lambda(A v=\lambda v)$, the generalized eigenvector w associated to v satisfies

$$
(A-\lambda I) w=v \Leftrightarrow A w=v+\lambda w
$$

Note

Generalized eigenvectors appear only if the number of independent eigenvectors associated to λ (dimension of the eigenspace) is less multiplicity of the eigenvalue.

Exercise 7.8.1

Exercise 7.8.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) X$

Recall:

- eigenvector $(A-\lambda l) v=0 \rightsquigarrow e^{\lambda t} v$ is a solution
- eigenvalue $(A-\lambda I) w=v \rightsquigarrow e^{\lambda t} w+t e^{\lambda t} v$ is a solution

Exercise 7.8.1

Exercise 7.8.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) X$

Recall:

- eigenvector $(A-\lambda /) v=0 \rightsquigarrow e^{\lambda t} v$ is a solution
- eigenvalue $(A-\lambda I) w=v \rightsquigarrow e^{\lambda t} w+t e^{\lambda t} v$ is a solution $\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$

Exercise 7.8.1

Exercise 7.8.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) X$

Recall:

- eigenvector $(A-\lambda /) v=0 \rightsquigarrow e^{\lambda t} v$ is a solution
- eigenvalue $(A-\lambda I) w=v \rightsquigarrow e^{\lambda t} w+t e^{\lambda t} v$ is a solution $\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$
$v=\binom{2}{1}$ and $w=\binom{1}{0}+x_{2}\binom{2}{1}$

Generalized eigenvectors

The process can keep going on if you don't have enough solutions

- $(A-\lambda I) v=0 \rightsquigarrow e^{\lambda t} v$
- $(A-\lambda /) w_{1}=v \rightsquigarrow e^{\lambda t} w_{1}+t e^{\lambda t} v$
- $(A-\lambda I) W_{2}=W_{1} \rightsquigarrow e^{\lambda t} W_{2}+t e^{\lambda t} w_{1}+\frac{t^{2}}{2} e^{\lambda t} v$
- ...
$\cdot(A-\lambda I) W_{k}=W_{k-1} \rightsquigarrow e^{\lambda t} w_{k}+t e^{\lambda t} w_{k-1}+\cdots+\frac{t^{k}}{k!} e^{\lambda t} V$

Jordan blocks

$$
x^{\prime}=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right) \cdot x
$$

$$
\Rightarrow X(t)=c_{1} e^{\lambda t}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+c_{2} e^{\lambda t}\left(\begin{array}{c}
t \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+c_{3} e^{\lambda t}\left(\begin{array}{c}
t^{2} / 2 \\
t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+c_{n} e^{\lambda t}\left(\begin{array}{c}
t^{n} / n! \\
t^{n-1} /(n-1)! \\
t^{n-2} /(n-2)! \\
\vdots \\
t \\
1
\end{array}\right)
$$

Jordan blocks

$$
X^{\prime}=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right) \cdot x
$$

$$
\Rightarrow X(t)=c_{1} e^{\lambda t}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+c_{2} e^{\lambda t}\left(\begin{array}{c}
t \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+c_{3} e^{\lambda t}\left(\begin{array}{c}
t^{2} / 2 \\
t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+c_{n} e^{\lambda t}\left(\begin{array}{c}
t^{n} / n! \\
t^{n-1} /(n-1)! \\
t^{n-2} /(n-2)! \\
\vdots \\
t \\
1
\end{array}\right)
$$

We can always "transform" a matrix so that the only thing that shows up are blocks like the above. For more, search for Jordan normal form.

Generic example with block matrices

Solve

$$
X^{\prime}=\left(\begin{array}{ccccccc}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{4}
\end{array}\right) \cdot X
$$

Exercise 7.8.18 (homework)

Solve $X^{\prime}=A \cdot X$, with $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4\end{array}\right)$ and given that $\lambda=2$ is a triple root of the characteristic polynomial of A.

