Math 23, Spring 2017

Edgar Costa
May 10, 2017
Dartmouth College

Solving homogeneous linear systems

$$
x^{\prime}=A \cdot x
$$

$X(t)=e^{\lambda t} v$ a solution $\Leftrightarrow v$ is an eigenvector and λ is its corresponding eigenvalue. 3 possible cases:
(A) All eigenvalues are real and distinct. \checkmark
(B) Some come in complex conjugate pairs
(C) Some eigenvalues come with multiplicity greater than 1.

Very similar to solving $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Complex eigenvalues

Claim

Assume that A is an $n \times n$ real matrix. If $\alpha+\beta i$ is an eigenvalue and v is an eigenvector corresponding to $\alpha+i \beta$, then $\alpha-i \beta$ is an eigenvector and \bar{v} (complex conjugate entrywise) is an eigenvector corresponding to $\alpha-i \beta$.

Complex eigenvalues

Claim

Assume that A is an $n \times n$ real matrix. If $\alpha+\beta i$ is an eigenvalue and v is an eigenvector corresponding to $\alpha+i \beta$, then $\alpha-i \beta$ is an eigenvector and \bar{v} (complex conjugate entrywise) is an eigenvector corresponding to $\alpha-i \beta$.

Ideas:

- $\bar{A}=A$
- $\operatorname{det}(A-\lambda I)$ is a polynomial with real coefficients
- $\overline{A v}=A \bar{V}$

Real solutions

Write $\lambda=\alpha+i \beta$ and $v=a+i b$, such that $A v=\lambda v$.

$$
\begin{cases}x_{1}(t)=e^{\lambda t} V & =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))(a+i b) \\ x_{2}(t)=\overline{X_{1}(t)}=e^{\bar{\lambda} t} \bar{V} & =e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))(a-i b)\end{cases}
$$

two complex solutions for

$$
X^{\prime}=A \cdot X
$$

How can I combine them to get two real solutions?

Real solutions

Write $\lambda=\alpha+i \beta$ and $v=a+i b$, such that $A v=\lambda v$.

$$
\begin{cases}x_{1}(t)=e^{\lambda t} v & =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))(a+i b) \\ x_{2}(t)=\overline{X_{1}(t)}=e^{\bar{\lambda} t} \bar{v} & =e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))(a-i b)\end{cases}
$$

two complex solutions for

$$
X^{\prime}=A \cdot X
$$

How can I combine them to get two real solutions?

$$
\begin{cases}\tilde{x}_{1}=\frac{x_{1}+x_{2}}{2}=e^{\alpha t}(\cos (\beta t) a-\sin (\beta t) b) & \left(=\operatorname{Re}\left(X_{1}\right)\right) \\ \tilde{x}_{2}=\frac{x_{1}-x_{2}}{2 i}=e^{\alpha t}(\sin (\beta t) a+\cos (\beta t) b) & \left(=\operatorname{Im}\left(X_{1}\right)\right)\end{cases}
$$

One can show that they are linearly independent.

Exercise 7.6.1

Exercise 7.6.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right) \cdot X$

Exercise 7.6.1

Exercise 7.6.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right) \cdot X$

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
\lambda^{2}-2 \lambda+5=0 \\
\lambda=1 \pm 2 i
\end{gathered}
$$

Exercise 7.6.1

Exercise 7.6.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right) \cdot X$

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
\lambda^{2}-2 \lambda+5=0 \\
\lambda=1 \pm 2 i
\end{gathered}
$$

The eigenvector corresponding to $1+2 i$ is $v=\binom{1}{1-i}$

Exercise 7.6.8

Exercise 7.6.8

Solve $X^{\prime}=\left(\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0\end{array}\right) \cdot X$

Exercise 7.6.8

Exercise 7.6.8

Solve $X^{\prime}=\left(\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0\end{array}\right) \cdot X$

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
-\lambda^{3}-4 \lambda^{2}-7 \lambda-6=0 \\
\lambda=-2,-1 \pm i \sqrt{2}
\end{gathered}
$$

Exercise 7.6.8

Exercise 7.6.8

Solve $X^{\prime}=\left(\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0\end{array}\right) \cdot X$

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
-\lambda^{3}-4 \lambda^{2}-7 \lambda-6=0 \\
\lambda=-2,-1 \pm i \sqrt{2} \\
v_{-2}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \text { and } v_{-1+i \sqrt{2}}=\left(\begin{array}{c}
\frac{\sqrt{2}}{i+\sqrt{2}} \\
-\frac{i}{i+\sqrt{2}} \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
1
\end{array}\right)+i\left(\begin{array}{c}
-\frac{\sqrt{2}}{3} \\
-\frac{\sqrt{2}}{3} \\
0
\end{array}\right)
\end{gathered}
$$

