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Today

• Last time, we learned how to solve X′ = P(t) · X abstractly.

• Today, we learn how to solve
X′ = A · X

explicitly, where A is a constant matrix.
• Remark: The solutions of an IVP associated to X′ = A · X are unique and
defined in R
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Example 0

Solve

X′ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 · X

What are the eigenvalues and the eigenvectors of


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

?
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Exponential solutions

We know how to solve

y′ = ay, y(0) = y0 =⇒ y(t) = eaty0

Why can’t we do the same thing with a matrix?

We can, indeed
X′ = A · X, X(0) = X0 =⇒ X(t) = eAt · X0

However, defining and computing eAt requires too much linear algebra.

We will instead find n linear independent solutions.

Let’s search for solutions of the type X(t) = eλtv.
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Eigenvalues and Eigenvectors

X′ = A · X

• X(t) = eλtv a solution =⇒ λ is an eigenvalue and v is an eigenvector
associated to λ.

• and vice versa!

We need to consider 3 possible cases:

(A) All eigenvalues are real and distinct.
(B) Some come in complex conjugate pairs
(C) Some eigenvalues come with multiplicity greater than 1.

Very similar to solving ay′′ + by′ + cy = 0.
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Case (A), all eigenvalues are real and distinct

• A n× n matrix
• λ1, . . . , λn distinct eigenvalues
• v1, . . . , vn corresponding eigenvectors

We want to show that {eλ1tv1, . . . , eλntvn} is a fundamental solution set.

What is the value of the Wronksian at t = 0? Indeed,

W(eλ1tv1, . . . , eλntvn)(t) = e(λ1+···+λn)t det

 | |
v1 · · · vn
| |


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Case (A), all eigenvalues are real and distinct

• A n× n matrix
• λ1, . . . , λn distinct eigenvalues
• v1, . . . , vn corresponding eigenvectors

Claim

v1, . . . , vn are linearly independent⇐⇒ det

 | |
v1 · · · vn
| |

 ̸= 0
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Exercise 7.5.1

Exercise 7.5.1

Solve X′ =
(
3 −2
2 −2

)
· X

det(A− λI) = λ2 − λ− 2 = (λ− 2)(λ+ 1)

v2 =
(
2
1

)
and v−1 =

(
1
2

)
.
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