Math 23, Spring 2017

Edgar Costa
May 8, 2017
Dartmouth College

Today

- Last time, we learned how to solve $X^{\prime}=P(t) \cdot X$ abstractly.

Today

- Last time, we learned how to solve $X^{\prime}=P(t) \cdot X$ abstractly.
- Today, we learn how to solve

$$
X^{\prime}=A \cdot X
$$

explicitly, where A is a constant matrix.

Today

- Last time, we learned how to solve $X^{\prime}=P(t) \cdot X$ abstractly.
- Today, we learn how to solve

$$
X^{\prime}=A \cdot X
$$

explicitly, where A is a constant matrix.

- Remark: The solutions of an IVP associated to $X^{\prime}=A \cdot X$ are unique and defined in \mathbb{R}

Example 0

Solve

$$
x^{\prime}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) \cdot x
$$

Example 0

Solve

$$
X^{\prime}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) \cdot x
$$

What are the eigenvalues and the eigenvectors of $\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)$?

Exponential solutions

We know how to solve

$$
y^{\prime}=a y, \quad y(0)=y_{0} \Longrightarrow y(t)=e^{a t} y_{0}
$$

Why can't we do the same thing with a matrix?

Exponential solutions

We know how to solve

$$
y^{\prime}=a y, \quad y(0)=y_{0} \Longrightarrow y(t)=e^{a t} y_{0}
$$

Why can't we do the same thing with a matrix?
We can, indeed

$$
X^{\prime}=A \cdot X, \quad X(0)=X_{0} \Longrightarrow X(t)=e^{A t} \cdot X_{0}
$$

Exponential solutions

We know how to solve

$$
y^{\prime}=a y, \quad y(0)=y_{0} \Longrightarrow y(t)=e^{a t} y_{0}
$$

Why can't we do the same thing with a matrix?
We can, indeed

$$
X^{\prime}=A \cdot X, \quad X(0)=X_{0} \Longrightarrow X(t)=e^{A t} \cdot X_{0}
$$

However, defining and computing $e^{A t}$ requires too much linear algebra.
We will instead find n linear independent solutions.

Exponential solutions

We know how to solve

$$
y^{\prime}=a y, \quad y(0)=y_{0} \Longrightarrow y(t)=e^{a t} y_{0}
$$

Why can't we do the same thing with a matrix?
We can, indeed

$$
X^{\prime}=A \cdot X, \quad X(0)=X_{0} \Longrightarrow X(t)=e^{A t} \cdot X_{0}
$$

However, defining and computing $e^{A t}$ requires too much linear algebra.
We will instead find n linear independent solutions.
Let's search for solutions of the type $X(t)=e^{\lambda t} v$.

Eigenvalues and Eigenvectors

$$
X^{\prime}=A \cdot X
$$

- $X(t)=e^{\lambda t} v$ a solution $\Longrightarrow \lambda$ is an eigenvalue and v is an eigenvector associated to λ.
- and vice versa!

Eigenvalues and Eigenvectors

$$
X^{\prime}=A \cdot X
$$

- $X(t)=e^{\lambda t} v$ a solution $\Longrightarrow \lambda$ is an eigenvalue and v is an eigenvector associated to λ.
- and vice versa!

We need to consider 3 possible cases:
(A) All eigenvalues are real and distinct.
(B) Some come in complex conjugate pairs
(C) Some eigenvalues come with multiplicity greater than 1.

Eigenvalues and Eigenvectors

$$
X^{\prime}=A \cdot X
$$

- $X(t)=e^{\lambda t} v$ a solution $\Longrightarrow \lambda$ is an eigenvalue and v is an eigenvector associated to λ.
- and vice versa!

We need to consider 3 possible cases:
(A) All eigenvalues are real and distinct.
(B) Some come in complex conjugate pairs
(C) Some eigenvalues come with multiplicity greater than 1.

Very similar to solving $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Case (A), all eigenvalues are real and distinct

- An×n matrix
- $\lambda_{1}, \ldots, \lambda_{n}$ distinct eigenvalues
- v_{1}, \ldots, v_{n} corresponding eigenvectors

We want to show that $\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}$ is a fundamental solution set.

Case (A), all eigenvalues are real and distinct

- An n n matrix
- $\lambda_{1}, \ldots, \lambda_{n}$ distinct eigenvalues
- v_{1}, \ldots, v_{n} corresponding eigenvectors

We want to show that $\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}$ is a fundamental solution set. What is the value of the Wronksian at $t=0$?

Case (A), all eigenvalues are real and distinct

- An $\times n$ matrix
- $\lambda_{1}, \ldots, \lambda_{n}$ distinct eigenvalues
- v_{1}, \ldots, v_{n} corresponding eigenvectors

We want to show that $\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}$ is a fundamental solution set. What is the value of the Wronksian at $t=0$? Indeed,

$$
W\left(e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right)(t)=e^{\left(\lambda_{1}+\cdots+\lambda_{n}\right) t} \operatorname{det}\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right)
$$

Case (A), all eigenvalues are real and distinct

- An n n matrix
- $\lambda_{1}, \ldots, \lambda_{n}$ distinct eigenvalues
- v_{1}, \ldots, v_{n} corresponding eigenvectors

Claim

v_{1}, \ldots, v_{n} are linearly independent $\Longleftrightarrow \operatorname{det}\left(\begin{array}{ccc}\mid & & \mid \\ v_{1} & \cdots & v_{n} \\ \mid & & \mid\end{array}\right) \neq 0$

Exercise 7.5.1

Exercise 7.5.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \cdot X$

Exercise 7.5.1

Exercise 7.5.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \cdot X$
$\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$

Exercise 7.5.1

Exercise 7.5.1

Solve $X^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \cdot X$
$\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$
$v_{2}=\binom{2}{1}$ and $v_{-1}=\binom{1}{2}$.

