Math 23, Spring 2017

Edgar Costa
May 5, 2017
Dartmouth College

§7.4 - back to systems of ODEs

Definition

A system of ODEs is linear, if it can be written as:

$$
\left\{\begin{array}{ll}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{1}+g_{1}(t) \\
x_{2}^{\prime} & =p_{21}(t) x_{1}+\cdots+p_{2 n}(t) x_{2}+g_{2}(t) \\
\vdots & = \\
\vdots & \ddots \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
\end{array} \Longleftrightarrow x^{\prime}=P(t) \cdot x+G(t)\right.
$$

Where

$$
X=\left(x_{1}, \ldots, x_{n}\right)^{T} \quad P(t)=\left\{p_{i j}(t)\right\}_{i, j} \quad G(t)=\left(g_{1}(t), \ldots, g_{n}(t)\right)^{T}
$$

If $G(t)=0$ (i.e, $g_{i}=0$), then this system is called a homogeneous system.

Homogeneous solutions

Theorem 7.4.1
If ϕ_{1} and ϕ_{2} are two solutions for

$$
X^{\prime}=P(t) X,
$$

then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution.

Proof?

Independent solutions

Definition

Let $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{n}(t)$ be n solutions to an n-dimensional homogeneous linear system

$$
X^{\prime}=P(t) \cdot X
$$

The solutions $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{n}(t)$ are linearly independent at a point t_{0} if

$$
W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right):=\operatorname{det}\left(\begin{array}{ccc}
\mid & & \mid \\
\phi_{1}\left(t_{0}\right) & \cdots & \phi_{n}\left(t_{0}\right) \\
\mid & & \mid
\end{array}\right) \neq 0
$$

$W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)(t)$ is called the Wronskian of the n-solutions.

General homogeneous solution (compare with Theorem 3.2.4)

Theorem 7.4.2

Consider the n-dimensional homogeneous linear system

$$
X^{\prime}=P(t) \cdot X
$$

with $P:(\alpha, \beta) \rightarrow \mathbb{R}^{n^{2}}$ continuous.
If $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{n}(t)$ are solutions and linear independent at some point t_{0}, then every solution in (α, β) is of the shape

$$
c_{1} \phi_{1}(t)+\cdots+c_{n} \phi_{n}(t) .
$$

Proof: Given another solution, Ψ, construct an IVP at t_{0} such that $c_{1} \phi_{1}(t)+\cdots+c_{n} \phi_{n}(t)$ also solves it for some c_{1}, \ldots, c_{n}.

A corollary

If $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$, then any IVP in (α, β) as a solution of the shape

$$
c_{1} \phi_{1}(t)+\cdots+c_{n} \phi_{n}(t) .
$$

Which means that for any $t \in(\alpha, \beta)$ the following system has a unique solution

$$
\left(\begin{array}{ccc}
\mid & & \mid \\
\phi_{1}(t) & \cdots & \phi_{n}(t) \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=x_{0}
$$

Hence, $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)(t) \neq 0$ for every $t \in(\alpha, \beta)$.
Theorem 7.4.3 (Compare with Abel's Theorem)
Either $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)(t)$ is never 0 , or is always identically 0 in (α, β).

Fundamental solution set

Consider the n-dimensional homogeneous linear system

$$
X^{\prime}=P(t) \cdot X
$$

with $P:(\alpha, \beta) \rightarrow \mathbb{R}^{n^{2}}$ continuous.

Definition

If $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)(t) \neq 0$ for some $t \in(\alpha, \beta)$ (\Rightarrow for all t), then $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is called a fundamental solution set.

Particular solutions

Theorem

If ϕ_{1} and ϕ_{2} are solutions for

$$
X^{\prime}=P(t) \cdot X+G(t)
$$

then $\phi_{1}-\phi_{2}$ are solutions for

$$
X^{\prime}=P(t) \cdot X
$$

Thus, to generically solve $X^{\prime}=P(t) \cdot X+G(t)$ we need to

- find n linear independent solutions for the homogeneous system $X^{\prime}=P(t) \cdot X$.
- find a particular solution for the system $X^{\prime}=P(t) \cdot X+G(t)$.

Exercise 7.4.7

Consider $\phi_{1}=\binom{t^{2}}{2 t} \phi_{2}=\binom{e^{t}}{e^{t}}$.

1. Compute $W\left(\phi_{1}, \phi_{2}\right)(t)$
2. In what intervals are ϕ_{1} and ϕ_{2} linear independent.
3. What conclusions can be made about the system of linear homogeneous ODE that ϕ_{1} and ϕ_{2} satisfy.
4. Figure out the system. (warning: algebra heavy)
