Math 23, Spring 2017

Edgar Costa

May 3, 2017

Dartmouth College

§7.3 Systems of linear equations

Definition

If b = 0 then the systems of linear equations is called **homogeneous**.

Edgar Costa

Math 23, Spring 2017

The system of linear equations

Ax = b

as **exactly** one solution if and only if det $A \neq 0$ (we will discuss det later on) and A is called **nonsingular**.

The system of linear equations

Ax = b

as **exactly** one solution if and only if det $A \neq 0$ (we will discuss det later on) and A is called **nonsingular**.

If det A = 0, then A is called **singular**, and either

- there are no solutions (think two parallel lines that do not intersect)
- \cdot or, there are infinitely many solutions (think two parallel lines that coincide)

Augmented matrix

Definition

The **augmented matrix** of the system Ax = b is

$$A \mid b = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} \text{ it is a } m \times (n+1) \text{ matrix.}$$

Definition

The **augmented matrix** of the system Ax = b is

$$A \mid b = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} \text{ it is a } m \times (n+1) \text{ matrix.}$$

We can solve the system with elementary operations on the augmented matrix.

1. exchanging rows

 \Leftrightarrow exchanging the order of the equations

2. adding to a row a multiple of **another** row

 $\Leftrightarrow \mathsf{multiplying} \text{ one equation and adding it to another equation}$

1. exchanging **rows**

 \Leftrightarrow exchanging the order of the equations

2. adding to a row a multiple of **another** row⇔ multiplying one equation and adding it to another equation

Applying the operations above to $A \mid b$ does not change the solutions of Ax = b.

Exercise 7.3.2

Solve

$$\begin{cases} x_1 + 2x_2 - x_3 &= 1\\ 2x_1 + x_2 + x_3 &= 1\\ x_1 - x_2 + 2x_3 &= 1 \end{cases}$$

The general goal we are trying to reach is to reduce the augmented matrix to a matrix

- all nonzero rows are above any rows of all zeroes, and
- the leading coefficient of a nonzero row is always strictly to the right of the leading coefficient of the row above it

Examples in more detail

Examples in more detail

Examples in more detail

Only for square matrices

$$\cdot \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Only for square matrices

$$\cdot \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

+ For 3 \times 3 there are many "ways" to compute:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = (aei + bfg + cdh) - (afh + bdi + ceg)$$
$$= a \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = (aei + bfg + cdh) - (afh + bdi + ceg)$$
$$= a \det \begin{pmatrix} \otimes & \otimes & \otimes \\ \otimes & e & f \\ \otimes & h & i \end{pmatrix} - b \det \begin{pmatrix} \otimes & \otimes & \otimes \\ d & \otimes & f \\ g & \otimes & i \end{pmatrix} + c \begin{pmatrix} \otimes & \otimes & \otimes \\ d & e & \otimes \\ g & h & \otimes \end{pmatrix}$$
$$= -b \det \begin{pmatrix} \otimes & \otimes & \otimes \\ d & \otimes & f \\ g & \otimes & i \end{pmatrix} + e \det \begin{pmatrix} a & \otimes & c \\ \otimes & \otimes & \otimes \\ g & \otimes & i \end{pmatrix} - h \det \begin{pmatrix} a & \otimes & c \\ d & \otimes & f \\ \otimes & \otimes & \otimes \end{pmatrix}$$

$$\det \begin{pmatrix} a^{\oplus} & b^{\oplus} & c^{\oplus} \\ d^{\ominus} & e^{\oplus} & f^{\ominus} \\ g^{\oplus} & h^{\ominus} & i^{\oplus} \end{pmatrix} = (aei + bfg + cdh) - (afh + bdi + ceg)$$
$$= a \det \begin{pmatrix} \otimes & \otimes & \otimes \\ \otimes & e & f \\ \otimes & h & i \end{pmatrix} - b \det \begin{pmatrix} \otimes & \otimes & \otimes \\ d & \otimes & f \\ g & \otimes & i \end{pmatrix} + c \begin{pmatrix} \otimes & \otimes & \otimes \\ d & e & \otimes \\ g & h & \otimes \end{pmatrix}$$
$$= -b \det \begin{pmatrix} \otimes & \otimes & \otimes \\ d & \otimes & f \\ g & \otimes & i \end{pmatrix} + e \det \begin{pmatrix} a & \otimes & c \\ \otimes & \otimes & \otimes \\ g & \otimes & i \end{pmatrix} - h \det \begin{pmatrix} a & \otimes & c \\ d & \otimes & f \\ \otimes & \otimes & \otimes \end{pmatrix}$$

Determinant 4x4 example

Using the last row (in both matrices)

$$\det \begin{pmatrix} 1^{\oplus} & 2 & 3 & 4 \\ 0^{\ominus} & 1 & 2 & 3 \\ 0^{\oplus} & 0 & 1 & 2 \\ 0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1^{\oplus} \end{pmatrix} = -0 \det(3 \times 3) + 0 \det(3x3) - 0 \det(3x3) + 1 \det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Determinant 4x4 example

Using the last row (in both matrices)

$$\det \begin{pmatrix} 1^{\oplus} & 2 & 3 & 4 \\ 0^{\ominus} & 1 & 2 & 3 \\ 0^{\oplus} & 0 & 1 & 2 \\ 0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1^{\oplus} \end{pmatrix} = -0 \det(3 \times 3) + 0 \det(3x3) - 0 \det(3x3) + 1 \det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

and det
$$\begin{pmatrix} 1^{\oplus} & 2 & 3\\ 0^{\ominus} & 1 & 2\\ 0^{\oplus} & 0^{\ominus} & 1^{\oplus} \end{pmatrix} = 0 \det(2 \times 2) - 0 \det(2 \times 2) + 1 \det \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}$$
$$= 0 - 0 + 1(1 \cdot 1 - 2 \cdot 0) = 1$$

Determinant 4x4 example

Using the last row (in both matrices)

$$\det \begin{pmatrix} 1^{\oplus} & 2 & 3 & 4 \\ 0^{\ominus} & 1 & 2 & 3 \\ 0^{\oplus} & 0 & 1 & 2 \\ 0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1^{\oplus} \end{pmatrix} = -0 \det(3 \times 3) + 0 \det(3x3) - 0 \det(3x3) + 1 \det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

and det
$$\begin{pmatrix} 1^{\oplus} & 2 & 3\\ 0^{\ominus} & 1 & 2\\ 0^{\oplus} & 0^{\ominus} & 1^{\oplus} \end{pmatrix} = 0 \det(2 \times 2) - 0 \det(2 \times 2) + 1 \det \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}$$
$$= 0 - 0 + 1(1 \cdot 1 - 2 \cdot 0) = 1$$

Therefore, $det(4 \times 4) = 1$

Checkout the KA video: link

Edgar Costa

Math 23, Spring 2017

Exercise 7.3.24

Exercise 7.3.24 Find all the eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$.

Exercise 7.3.24

Find all the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & 0 \end{bmatrix}$

$$\begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}.$$

/- - .)

Definition

- The characteristic polynomial of A is det(A λl)
- eigenvalues are the roots of the characteristic polynomial of A
- + eigenvectors corresponding to an eigenvalue $\tilde{\lambda}$ are the vector solutions of

$$(A - \tilde{\lambda}I)v = 0 \Leftrightarrow Av = \tilde{\lambda}v$$

$$\det(A - \lambda I) = \det \begin{pmatrix} 3 - \lambda & 2 & 4 \\ 2 & 0 - \lambda & 2 \\ 4 & 2 & 3 - \lambda \end{pmatrix}$$
$$= (3 - \lambda) \det \begin{pmatrix} -\lambda & 2 \\ 2 & 3 - \lambda \end{pmatrix} - 2 \det \begin{pmatrix} 2 & 4 \\ 2 & 3 - \lambda \end{pmatrix} + 4 \det \begin{pmatrix} 2 & 4 \\ -\lambda & 2 \end{pmatrix}$$
$$= -\lambda^3 + 6\lambda^2 + 15\lambda + 8 = -(\lambda + 1)^2(\lambda - 8)$$

The eigenvalues are -1 and 8.

Solution Exercise 7.3.24 (eigenvectors for $\lambda = -1$)

$$(A - (-1)I)v = 0 \Leftrightarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda = -1$)

$$(A - (-1)I)v = 0 \Leftrightarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Row reduce the augmented matrix $\begin{pmatrix} 4 & 2 & 4 & 0 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Solution Exercise 7.3.24 (eigenvectors for $\lambda = -1$)

$$(A - (-1)I)v = 0 \Leftrightarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Row reduce the augmented matrix $\begin{pmatrix} 4 & 2 & 4 & 0 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $\Leftrightarrow 2x_1 + x_2 + 2x_3 = 0 \Leftrightarrow x_1 = -\frac{1}{2}x_2 - x_3.$
In terms of vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}x_2 - x_3 \\ x_2 \\ x_3 \end{pmatrix} = \underbrace{\begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \\ y_1 \end{pmatrix}}_{V_1} x_2 + \underbrace{\begin{pmatrix} -1 \\ 0 \\ 1 \\ y_2 \end{pmatrix}}_{V_2} x_3$

$$v_1 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ are both eigenvectors for $\lambda = -1$

$$v_1 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ are both eigenvectors for $\lambda = -1$

Any linear combination of them is also an eigenvector, just check it:

$$A \cdot (c_1v_1 + c_2v_2) = c_1A \cdot v_1 + c_2A \cdot v_2 = c_1\lambda v_1 + c_2\lambda v_2 = \lambda(c_1v_1 + c_2v_2)$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda = 8$)

$$(A - 8I)v = 0 \Leftrightarrow \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$(A - 8I)v = 0 \Leftrightarrow \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Row reduce the augmented matrix $\begin{pmatrix} -5 & 2 & 4 & 0 \\ 2 & -8 & 2 & 0 \\ 4 & 2 & -5 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
$$\begin{cases} x_1 - 4x_2 + x_3 = 0 \\ 2x_2 + x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = 2x_2 \\ x_3 = 2x_2 \end{cases} \Leftrightarrow v = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} x_2$$

We say that
$$b_1 = \begin{pmatrix} b_{11} \\ \vdots \\ b_{n1} \end{pmatrix}, \cdots, b_k = \begin{pmatrix} b_{1k} \\ \vdots \\ b_{nk} \end{pmatrix}$$

are **linearly dependent** if exists

 c_1, \cdots, c_k not all zeros such that

$$c_1b_1+\cdots+c_kb_k=0$$

We say that
$$b_1 = \begin{pmatrix} b_{11} \\ \vdots \\ b_{n1} \end{pmatrix}, \cdots, b_k = \begin{pmatrix} b_{1k} \\ \vdots \\ b_{nk} \end{pmatrix}$$

 c_1, \cdots, c_k not all zeros such that

$$c_1b_1 + \dots + c_kb_k = 0$$

are linearly dependent if exists

In other words, if
$$\begin{pmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = 0$$
 has a nontrivial solution.

We say that
$$b_1 = \begin{pmatrix} b_{11} \\ \vdots \\ b_{n1} \end{pmatrix}, \cdots, b_k = \begin{pmatrix} b_{1k} \\ \vdots \\ b_{nk} \end{pmatrix}$$

are **linearly dependent** if exists

 c_1, \cdots, c_k not all zeros such that

$$c_1b_1 + \cdots + c_kb_k = 0$$

In other words, if
$$\begin{pmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = 0$$
 has a nontrivial solution.

Otherwise, if only the trivial solution exists, then we say that b_1, \dots, b_k are **linearly independent**.

We say that
$$b_1 = \begin{pmatrix} b_{11} \\ \vdots \\ b_{n1} \end{pmatrix}, \cdots, b_k = \begin{pmatrix} b_{1k} \\ \vdots \\ b_{nk} \end{pmatrix}$$

 c_1, \cdots, c_k not all zeros such that

$$c_1b_1+\cdots+c_kb_k=0$$

are **linearly dependent** if exists

In other words, if
$$\begin{pmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = 0$$
 has a nontrivial solution.

Otherwise, if only the trivial solution exists, then we say that b_1, \dots, b_k are **linearly independent**.

If k = n, then linearly independence can be checked by computing the determinant of the matrix above!

Edgar Costa

Math 23, Spring 2017