Math 23, Spring 2017

Edgar Costa
May 3, 2017
Dartmouth College

§7.3 Systems of linear equations

$$
\begin{aligned}
& \left\{\begin{array}{ccccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{n} \\
\vdots & \vdots & \ddots & \vdots & = \\
a_{0}
\end{array} \quad \Longleftrightarrow A \cdot x=b,\right. \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& \text { where } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

Definition

If $b=0$ then the systems of linear equations is called homogeneous.

Determinant

The system of linear equations

$$
A x=b
$$

as exactly one solution if and only if $\operatorname{det} A \neq 0$ (we will discuss det later on) and A is called nonsingular.

Determinant

The system of linear equations

$$
A x=b
$$

as exactly one solution if and only if $\operatorname{det} A \neq 0$ (we will discuss det later on) and A is called nonsingular.

If $\operatorname{det} A=0$, then A is called singular, and either

- there are no solutions (think two parallel lines that do not intersect)
- or, there are infinitely many solutions (think two parallel lines that coincide)

Augmented matrix

Definition

The augmented matrix of the system $A x=b$ is

$$
A \left\lvert\, b=\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right. \text { it is a } m \times(n+1) \text { matrix. }
$$

Augmented matrix

Definition

The augmented matrix of the system $A x=b$ is

$$
A \left\lvert\, b=\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right. \text { it is a } m \times(n+1) \text { matrix. }
$$

We can solve the system with elementary operations on the augmented matrix.

1. exchanging rows
\Leftrightarrow exchanging the order of the equations
2. adding to a row a multiple of another row
\Leftrightarrow multiplying one equation and adding it to another equation

Elementary Operations

1. exchanging rows
\Leftrightarrow exchanging the order of the equations
2. adding to a row a multiple of another row
\Leftrightarrow multiplying one equation and adding it to another equation
Applying the operations above to $A \mid b$ does not change the solutions of $A x=b$.

Exercise 7.3.2

Solve

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=1 \\
2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}-x_{2}+2 x_{3}=1
\end{array}\right.
$$

Elementary Operations

The general goal we are trying to reach is to reduce the augmented matrix to a matrix

- all nonzero rows are above any rows of all zeroes, and
- the leading coefficient of a nonzero row is always strictly to the right of the leading coefficient of the row above it

Example

$$
\left(\begin{array}{llll}
\square & * & * & * \\
0 & \square & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { or }\left(\begin{array}{ccccccc}
0 & \square & * & * & * & * & * \\
0 & 0 & 0 & \square & * & * & * \\
0 & 0 & 0 & 0 & \square & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & \square
\end{array}\right)
$$

where means $\neq 0$.

Examples in more detail

$\cdot\left(\begin{array}{llll}\square & * & * & * \\ 0 & \square & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ has infinitely many solutions.

Examples in more detail

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\square & * & * & * \\
0 & \boldsymbol{\square} & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { has infinitely many solutions. } \\
& \left(\begin{array}{lllllll}
0 & \square & * & * & * & * & * \\
0 & 0 & 0 & \square & * & * & * \\
0 & 0 & 0 & 0 & \square & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & \square
\end{array}\right) \text { has no solutions. }
\end{aligned}
$$

Examples in more detail

- $\left(\begin{array}{llll}\square & * & * & * \\ 0 & \square & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ has infinitely many solutions.
$\cdot\left(\begin{array}{lllllll}0 & \square & * & * & * & * & * \\ 0 & 0 & 0 & \square & * & * & * \\ 0 & 0 & 0 & 0 & \square & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \square\end{array}\right)$ has no solutions.
$\cdot\left(\begin{array}{cccc}\square & * & * & * \\ 0 & \square & * & * \\ 0 & 0 & \square & *\end{array}\right)$ has exactly one solution.

Determinants

Only for square matrices

- $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$

Determinants

Only for square matrices

- $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
- For 3×3 there are many "ways" to compute:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) & =(a e i+b f g+c d h)-(a f h+b d i+c e g) \\
& =a \operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)+c \operatorname{det}\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right)
\end{aligned}
$$

Determinants

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) & =(a e i+b f g+c d h)-(a f h+b d i+c e g) \\
& =a \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
\otimes & e & f \\
\otimes & h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & \otimes & f \\
g & \otimes & i
\end{array}\right)+c\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & e & \otimes \\
g & h & \otimes
\end{array}\right) \\
& =-b \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & \otimes & f \\
g & \otimes & i
\end{array}\right)+e \operatorname{det}\left(\begin{array}{lll}
a & \otimes & c \\
\otimes & \otimes & \otimes \\
g & \otimes & i
\end{array}\right)-h \operatorname{det}\left(\begin{array}{lll}
a & \otimes & c \\
d & \otimes & f \\
\otimes & \otimes & \otimes
\end{array}\right)
\end{aligned}
$$

Determinants

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
a^{\oplus} & b^{\ominus} & c^{\oplus} \\
d^{\ominus} & e^{\oplus} & f^{\ominus} \\
g^{\oplus} & h^{\ominus} & i^{\oplus}
\end{array}\right) & =(a e i+b f g+c d h)-(a f h+b d i+c e g) \\
& =a \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
\otimes & e & f \\
\otimes & h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & \otimes & f \\
g & \otimes & i
\end{array}\right)+c\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & e & \otimes \\
g & h & \otimes
\end{array}\right) \\
& =-b \operatorname{det}\left(\begin{array}{lll}
\otimes & \otimes & \otimes \\
d & \otimes & f \\
g & \otimes & i
\end{array}\right)+e \operatorname{det}\left(\begin{array}{lll}
a & \otimes & c \\
\otimes & \otimes & \otimes \\
g & \otimes & i
\end{array}\right)-h \operatorname{det}\left(\begin{array}{lll}
a & \otimes & c \\
d & \otimes & f \\
\otimes & \otimes & \otimes
\end{array}\right)
\end{aligned}
$$

Determinant 4×4 example

Using the last row (in both matrices)
$\operatorname{det}\left(\begin{array}{cccc}1^{\oplus} & 2 & 3 & 4 \\ 0^{\ominus} & 1 & 2 & 3 \\ 0^{\oplus} & 0 & 1 & 2 \\ 0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1^{\oplus}\end{array}\right)=-0 \operatorname{det}(3 \times 3)+0 \operatorname{det}(3 \times 3)-0 \operatorname{det}(3 \times 3)+1 \operatorname{det}\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

Determinant 4×4 example

Using the last row (in both matrices)

$$
\operatorname{det}\left(\begin{array}{cccc}
1^{\oplus} & 2 & 3 & 4 \\
0^{\ominus} & 1 & 2 & 3 \\
0^{\oplus} & 0 & 1 & 2 \\
0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1^{\oplus}
\end{array}\right)=-0 \operatorname{det}(3 \times 3)+0 \operatorname{det}(3 \times 3)-0 \operatorname{det}(3 \times 3)+1 \operatorname{det}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\text { and } \begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
1^{\oplus} & 2 & 3 \\
0^{\ominus} & 1 & 2 \\
0^{\oplus} & 0^{\ominus} & 1 \oplus
\end{array}\right) & =0 \operatorname{det}(2 \times 2)-0 \operatorname{det}(2 \times 2)+1 \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =0-0+1(1 \cdot 1-2 \cdot 0)=1
\end{aligned}
$$

Determinant 4×4 example

Using the last row (in both matrices)
$\operatorname{det}\left(\begin{array}{cccc}1^{\oplus} & 2 & 3 & 4 \\ 0^{\ominus} & 1 & 2 & 3 \\ 0^{\oplus} & 0 & 1 & 2 \\ 0^{\ominus} & 0^{\oplus} & 0^{\ominus} & 1 \oplus\end{array}\right)=-0 \operatorname{det}(3 \times 3)+0 \operatorname{det}(3 \times 3)-0 \operatorname{det}(3 \times 3)+1 \operatorname{det}\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
\text { and } \operatorname{det}\left(\begin{array}{ccc}
1^{\oplus} & 2 & 3 \\
0^{\ominus} & 1 & 2 \\
0^{\oplus} & 0 & 1 \oplus
\end{array}\right) & =0 \operatorname{det}(2 \times 2)-0 \operatorname{det}(2 \times 2)+1 \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =0-0+1(1 \cdot 1-2 \cdot 0)=1
\end{aligned}
$$

Therefore, $\operatorname{det}(4 \times 4)=1$
Checkout the KA video: link

Exercise 7.3.24

Exercise 7.3.24

Find all the eigenvalues and eigenvectors of $A=\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)$.

Exercise 7.3.24

Exercise 7.3.24

Find all the eigenvalues and eigenvectors of $A=\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)$.

Definition

- The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)$
- eigenvalues are the roots of the characteristic polynomial of A
- eigenvectors corresponding to an eigenvalue $\tilde{\lambda}$ are the vector solutions of

$$
(A-\tilde{\lambda} /) v=0 \Leftrightarrow A v=\tilde{\lambda} v
$$

Solution Exercise 7.3.24 (eigenvalues)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 2 & 4 \\
2 & 0-\lambda & 2 \\
4 & 2 & 3-\lambda
\end{array}\right) \\
& =(3-\lambda) \operatorname{det}\left(\begin{array}{cc}
-\lambda & 2 \\
2 & 3-\lambda
\end{array}\right)-2 \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
2 & 3-\lambda
\end{array}\right)+4 \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
-\lambda & 2
\end{array}\right) \\
& =-\lambda^{3}+6 \lambda^{2}+15 \lambda+8=-(\lambda+1)^{2}(\lambda-8)
\end{aligned}
$$

The eigenvalues are -1 and 8 .

Solution Exercise 7.3.24 (eigenvectors for $\lambda=-1$)

$$
(A-(-1) I) v=0 \Leftrightarrow\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=-1$)

$$
(A-(-1) I) v=0 \Leftrightarrow\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

Row reduce the augmented matrix $\left(\begin{array}{llll}4 & 2 & 4 & 0 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 4 & 0\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=-1$)

$(A-(-1) I) v=0 \Leftrightarrow\left(\begin{array}{lll}4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
Row reduce the augmented matrix $\left(\begin{array}{cccc}4 & 2 & 4 & 0 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 4 & 0\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\Leftrightarrow 2 x_{1}+x_{2}+2 x_{3}=0 \Leftrightarrow x_{1}=-\frac{1}{2} x_{2}-x_{3}$.
In terms of vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-\frac{1}{2} x_{2}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right)=\underbrace{\left(\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right)}_{v_{1}} x_{2}+\underbrace{\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)}_{v_{2}} x_{3}$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=-1$)

$$
v_{1}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right) \text { and } v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \text { are both eigenvectors for } \lambda=-1
$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=-1$)

$v_{1}=\left(\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ are both eigenvectors for $\lambda=-1$
Any linear combination of them is also an eigenvector, just check it:

$$
A \cdot\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} A \cdot v_{1}+c_{2} A \cdot v_{2}=c_{1} \lambda v_{1}+c_{2} \lambda v_{2}=\lambda\left(c_{1} v_{1}+c_{2} v_{2}\right)
$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=8$)

$$
(A-8 I) v=0 \Leftrightarrow\left(\begin{array}{ccc}
-5 & 2 & 4 \\
2 & -8 & 2 \\
4 & 2 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

Solution Exercise 7.3.24 (eigenvectors for $\lambda=8$)

$(A-8 I) v=0 \Leftrightarrow\left(\begin{array}{ccc}-5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
Row reduce the augmented matrix $\left(\begin{array}{cccc}-5 & 2 & 4 & 0 \\ 2 & -8 & 2 & 0 \\ 4 & 2 & -5 & 0\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\left\{\begin{array}{l}x_{1}-4 x_{2}+x_{3}=0 \\ 2 x_{2}+x_{3}=0\end{array} \Leftrightarrow\left\{\begin{array}{l}x_{1}=2 x_{2} \\ x_{3}=2 x_{2}\end{array} \Leftrightarrow v=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) x_{2}\right.\right.$

Linear independence

We say that $b_{1}=\left(\begin{array}{c}b_{11} \\ \vdots \\ b_{n 1}\end{array}\right), \cdots, b_{k}=\left(\begin{array}{c}b_{1 k} \\ \vdots \\ b_{n k}\end{array}\right)$ are linearly dependent if exists c_{1}, \cdots, c_{k} not all zeros such that

$$
c_{1} b_{1}+\cdots+c_{k} b_{k}=0
$$

Linear independence

We say that $b_{1}=\left(\begin{array}{c}b_{11} \\ \vdots \\ b_{n 1}\end{array}\right), \cdots, b_{k}=\left(\begin{array}{c}b_{1 k} \\ \vdots \\ b_{n k}\end{array}\right)$ are linearly dependent if exists c_{1}, \cdots, c_{k} not all zeros such that

$$
c_{1} b_{1}+\cdots+c_{k} b_{k}=0
$$

In other words, if $\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 k} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \cdots & b_{n k}\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right)=0$ has a nontrivial solution.

Linear independence

We say that $b_{1}=\left(\begin{array}{c}b_{11} \\ \vdots \\ b_{n 1}\end{array}\right), \cdots, b_{k}=\left(\begin{array}{c}b_{1 k} \\ \vdots \\ b_{n k}\end{array}\right)$ are linearly dependent if exists c_{1}, \cdots, c_{k} not all zeros such that

$$
c_{1} b_{1}+\cdots+c_{k} b_{k}=0
$$

In other words, if $\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 k} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \cdots & b_{n k}\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right)=0$ has a nontrivial solution.
Otherwise, if only the trivial solution exists, then we say that b_{1}, \cdots, b_{k} are linearly independent.

Linear independence

We say that $b_{1}=\left(\begin{array}{c}b_{11} \\ \vdots \\ b_{n 1}\end{array}\right), \cdots, b_{k}=\left(\begin{array}{c}b_{1 k} \\ \vdots \\ b_{n k}\end{array}\right)$ are linearly dependent if exists c_{1}, \cdots, c_{k} not all zeros such that

$$
\begin{aligned}
& \text { In other words, if }\left(\begin{array}{ccc}
b_{11} b_{1}+\cdots+c_{k} b_{k}=0 \\
\vdots & \cdots & b_{1 k} \\
b_{n 1} & \cdots & b_{n k}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right)=0 \text { has a nontrivial solution. }
\end{aligned}
$$

Otherwise, if only the trivial solution exists, then we say that b_{1}, \cdots, b_{k} are linearly independent.

If $k=n$, then linearly independence can be checked by computing the determinant of the matrix above!

