## Math 23, Spring 2017

Edgar Costa
May 1, 2017
Dartmouth College

## Systems of 1st order

So far we have been studying one equation at a time.
What happens if there is more than one force in play? How can we handle that.

## n-body problem

Given position, velocity and time of a group of celestial bodies, predict their interactive forces; and consequently, predict their true orbital motions for all future times.

We can replace "Gravity" by other forces...
Check out the applet:
http://www.princeton.edu/~rvdb/WebGL/nBody.html

## $n$th order equations

$$
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

## can be rewritten as

$$
x(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right):=\left(\begin{array}{c}
y(t) \\
y^{\prime}(t) \\
\vdots \\
y^{(n-1)}(t)
\end{array}\right) \quad \rightsquigarrow \quad x^{\prime}(t)=\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{c}
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
x_{n}(t) \\
F\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right)
$$

## The generic system of ODE's

In general we are interested in studying

$$
\begin{cases}x_{1}^{\prime} & =F_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\ \vdots & =\vdots \\ x_{n}^{\prime} & =F_{n}\left(t, x_{1}, \ldots, x_{n}\right)\end{cases}
$$

A solution for $(\Delta)$ is a collection of $n$ differentiable functions $\phi_{i}(t)$ in $t \in(\alpha, \beta)$, with $i=1, \ldots, n$, such that taking $x_{i}=\phi_{i}$ makes all the equations in $(\Delta)$ true identities.

We have an Initial Value Problem if we are also given initial conditions of the form

$$
x_{1}\left(t_{0}\right)=a_{0}, \cdots, x_{n}\left(t_{0}\right)=a_{n}
$$

## Existence and uniqueness

## Theorem 7.1.1 (generalization of Theorem 2.4.1)

Consider the following Initial Value Problem:

$$
\begin{cases}x_{1}^{\prime} & =F_{1}\left(t, x_{1}, \ldots, x_{n}\right), \quad x_{1}\left(t_{0}\right)=a_{0} \\ \vdots & =\vdots \\ x_{n}^{\prime}=F_{n}\left(t, x_{1}, \ldots, x_{n}\right), \quad x_{n}\left(t_{0}\right)=a_{n}\end{cases}
$$

Assume that $F_{i}$ and $\frac{\partial F_{i}}{\partial x_{j}}$ (but not necessarily $\frac{\partial F_{i}}{\partial t}$ ) are continuous in a small $(n+1)$-dimensional box containing $\left(t_{0}, a_{0}, \ldots, a_{n}\right)$.
Then there exists $h>0$ (probably very small) such that the $(\Delta)$ has a unique solution on $\left(t_{0}-h, t_{0}+h\right)$.

Q: What about linear systems? What is a linear system?

## First order linear systems of ODEs

## Definition

The system $(\Delta)$ is linear, if $F_{i}$ are linear functions of $x_{j}$, i.e., if it can be written as:

$$
\left\{\begin{array}{ll}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{1}+g_{1}(t) \\
x_{2}^{\prime} & =p_{21}(t) x_{1}+\cdots+p_{2 n}(t) x_{2}+g_{2}(t) \\
\vdots & =\vdots \quad \ddots \quad \vdots \quad+\quad \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
\end{array} \Leftrightarrow X^{\prime}=P(t) \cdot x+G(t)\right.
$$

Where

$$
X=\left(x_{1}, \ldots, x_{n}\right)^{T} \quad P(t)=\left\{p_{i j}(t)\right\}_{i, j} \quad G(t)=\left(g_{1}(t), \ldots, g_{n}(t)\right)^{T}
$$

If $G(t)=0$ (i.e, $g_{i}=0$ ), then this system is called a homogeneous system.

## Existence and uniqueness for linear systems

## Theorem 7.1.2

If $P(t):(\alpha, \beta) \rightarrow \mathbb{R}^{n^{2}}$ and $G(t):(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ are continuous, then there is a unique solution, defined in $(\alpha, \beta)$ for the Initial Value Problem (with $t_{0} \in(\alpha, \beta)$ )

$$
X^{\prime}=P(t) \cdot X+G(t), \quad X\left(t_{0}\right)=X_{0}
$$

## §7.2 Review of Matrices

An $m \times n$ matrix $A$ is a "table" with $m$ rows and $n$ columns.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

We may also write $A=\left(a_{i j}\right)_{i=1, \ldots, m}$

$$
j=1, \ldots, n
$$

We may also refer to the element in the ith row and jth column by $A_{i j}$.

## Transpose

## Definition

The transpose of $A, A^{T}$ or $A^{t}$, is a $n \times m$ matrix, obtained by interchanging the rows and columns, i.e., $\left(A^{T}\right)_{i j}=A_{j i}$.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
$$

## Exercise

Given $A=\left(\begin{array}{ccc}1+i & 2 & 3 \\ -i & \pi & e-i\end{array}\right)$. Compute $A^{\top}$.

## Conjugate

## Definition

The conjugate of $A, \bar{A}$, is a $m \times n$ matrix, obtained by conjugating all entries of $A$, i.e, $(\bar{A})_{i j}=\overline{A_{i j}}$.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \Rightarrow \bar{A}=\left(\begin{array}{cccc}
\overline{a_{11}} & \overline{a_{12}} & \cdots & \overline{a_{1 n}} \\
\overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\overline{a_{m 1}} & \overline{a_{m 2}} & \cdots & \overline{a_{m n}}
\end{array}\right)
$$

## Exercise

Given $A=\left(\begin{array}{ccc}1+i & 2 & 3 \\ -i & \pi & e-i\end{array}\right)$. Compute $\bar{A}$.

## Adjoint

## Definition

We defined the adjoint of $A$ as $A^{*}:=\overline{A^{\top}}=\bar{A}^{\top}$.

## Exercise

Given $A=\left(\begin{array}{ccc}1+i & 2 & 3 \\ -i & \pi & e-i\end{array}\right)$. Compute $A^{*}$.

## Operations on matrices: Equality, addition and subtraction

Equality: two matrices are equal if they have the same dimensions and the same entries.

Addition and subtraction: it's done entry wise.

$$
(A+B)_{i j}=A_{i j}+B_{i j}
$$

Note: $A+B$ and $A-B$ are only defined if they have the same dimensions.

## Exercise

Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 0 & 2\end{array}\right)$
Compute $A+B, A-B$ and $A+B^{\top}$.

## Operations on matrices: Zero matrix

## Definition

The zero matrix is a $m \times n$ matrix with all entries zero.

## Example

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

## Operations on matrices: Scalar multiplication

Scalar multiplication: it's done entry wise

$$
(\alpha A)_{i j}=\alpha A_{i j}, \quad \alpha \in \mathbb{R} \text { or } \mathbb{C}
$$

## Example

$$
3 \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
3 & 6 & 9 \\
12 & 15 & 18
\end{array}\right)
$$

So far, addition, subtraction, scalar multiplication and the zero matrix, behave very similarly to vectors, except we represent them as tables instead of lists.

## Matrix multiplication

## Remark

Matrices can be multiplied only if the first matrix has as many columns as the second matrix has rows.

- $A$ is a $m \times n$ matrix
- $B$ is a $n \times k$ matrix
- then $A \cdot B$ is a $m \times k$ matrix

The element in the $i$ th row and $j$ th column of $A \cdot B$ is

$$
(A \cdot B)_{i j}=\sum_{\ell=1}^{k} A_{i \ell} B_{\ell j}
$$

In other words, we have to transverse the ith row of $A$ and the jth column of $B$ and sum the product of the corresponding entires.

## Matrix multiplication

$$
(A \cdot B)_{i j}=\sum_{\ell=1}^{k} A_{i \ell} B_{\ell j}
$$

## Example

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right) \\
& A \cdot B=\left(\begin{array}{ll}
1 \cdot 1+2 \cdot 0+1 \cdot 2 & 1 \cdot 0+2 \cdot 1+1 \cdot 3 \\
3 \cdot 1+2 \cdot 0+3 \cdot 2 & 3 \cdot 0+2 \cdot 1+3 \cdot 3
\end{array}\right)=\left(\begin{array}{cc}
3 & 5 \\
9 & 11
\end{array}\right) \\
& B \cdot A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 2 & 3 \\
11 & 10 & 11
\end{array}\right) \neq A \cdot B
\end{aligned}
$$

Matrix multiplication is not commutative! (not even of the same shape)

## Multiplication properties

Sometimes $A \cdot B$ exists, but $B \cdot A$ does not. Example?
It is associative and distributive (if all the operations are defined)

$$
\begin{aligned}
(A \cdot B) \cdot C & =A \cdot(B \cdot C) \\
A \cdot(B+C) & =A \cdot B+A \cdot C \\
(B+C) \cdot A & =B \cdot A+C \cdot A
\end{aligned}
$$

## Identity matrix

The Identity matrix is a $n \times n$ matrix, with 1 s on the diagonal and zeros everywhere else.

$$
I_{n \times n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

If $A$ is a $m \times n$ matrix

$$
A \cdot I_{n \times n}=A=I_{m \times m} \cdot A
$$

## Vectors as matrices

An $n$-dimensional vector can be interpreted as a row, i.e., $1 \times n$ matrix, or as a column, i.e., $n \times 1$ matrix.

## Example: inner product

$x, y \in \mathbb{R}^{n}, x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$
Then $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}=x^{\top} \cdot y$

## Exercise

Use matrix multiplication to compute the norm of $x=(1213)^{\top}$.
Hint: $\|x\|=\sqrt{\langle x, x\rangle}$.

