Math 23, Spring 2017

Edgar Costa
April 24, 26, and 28, 2017
Dartmouth College

The Laplace Transform

$$
\left\{\begin{aligned}
f:[0,+\infty) & \longrightarrow \mathbb{R} \\
t & \longmapsto f(t)
\end{aligned}\right\} \longmapsto\left\{\begin{aligned}
\mathcal{L}(f): \mid & \longrightarrow \mathbb{R} \\
s & \longmapsto \mathcal{L}(f)(s)
\end{aligned}\right\}
$$

IVP in t-domain \longmapsto algebraic equations in the s-domain

Definition

$$
\mathcal{L}(f)(s):=\int_{0}^{+\infty} e^{-s t} f(t) \mathrm{d} t \quad \text { (if the integral converges) }
$$

Note: \mathcal{L} is a linear operator!!n other words, if $\mathcal{L}\left(f_{1}\right)(s)$ and $\mathcal{L}\left(f_{2}\right)(s)$ exist, then

$$
\mathcal{L}\left(c_{1} f_{1}+c_{2} f_{2}\right)(s)=c_{1} \mathcal{L}\left(f_{1}\right)(s)+c_{2} \mathcal{L}\left(f_{2}\right)(s)
$$

Some examples

$\cdot \mathcal{L}(1)=\int_{0}^{+\infty} e^{-s t} \mathrm{~d} t=-\lim _{A \rightarrow+\infty}\left[\frac{e^{-s t}}{s}\right]_{0}^{A}=\frac{1}{s}, \quad s>0$

- $\mathcal{L}\left(e^{a t}\right)=\int_{0}^{+\infty} e^{a t} e^{-s t} \mathrm{~d} t=\int_{0}^{+\infty} e^{(a-s) t} \mathrm{~d} t=\frac{1}{s-a}, \quad s>a$

In particular, $\mathcal{L}\left(e^{0 t}\right)=\frac{1}{s}, \quad s>0$

Theorem 6.1.2

1. If f is piecewise continuous on $[0, A]$, for any $A>0$
2. If $|f(t)| \leq K e^{a t}$ for $t>M$, with $K, M, a \in \mathbb{R}$ and $K, M>0$.

Then the Laplace transform $\mathcal{L}(f)(s)$ exists for $s>a$.

More examples

- $\mathcal{L}(\cos (\beta t))=$?
$\mathcal{L}(\sin (\beta t))=$?
We could use the definition, but what would require integrating by parts twice per function!
- Let's use complex analysis!

$$
\begin{aligned}
e^{(\alpha+i \beta) t} & =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
\mathcal{L}\left(e^{(\alpha+i \beta) t} \mid\right. & =e^{\alpha t} \sqrt{\cos (\beta t)^{2}+\sin (\beta t)^{2}}=e^{\alpha t} \\
& =\frac{1}{s-(\alpha+\beta i)}, \quad s>\alpha
\end{aligned}
$$

Exercise

Deduce $\mathcal{L}\left(e^{\alpha t} \cos (\beta t)\right)$ and $\mathcal{L}\left(e^{\alpha t} \sin (\beta t)\right)$ with $\alpha, \beta \in \mathbb{R}$.

Main Theorem

Theorem 6.2.1

1. If f is continuous and f^{\prime} is piecewise continuous on $[0, A]$, for any $A>0$
2. If $|f(t)| \leq K e^{a t}$ for $t>M$, with $K, M, a \in \mathbb{R}$ and $K, M>0$.

Then the Laplace transform $\mathcal{L}\left(f^{\prime}\right)(s)$ exists for $s>a$ and

$$
\mathcal{L}\left(f^{\prime}\right)(s)=s \mathcal{L}(f)(s)-f(0)
$$

Proof sketch: If f and f^{\prime} are continuous on $[0, A]$, then

$$
\int_{0}^{A} e^{-s t} f^{\prime}(t) \mathrm{d} t=\left[e^{-s t} f(t)\right]_{0}^{A}+s \int_{0}^{A} e^{-s t} f(t) \mathrm{d} t
$$

Main Theorem 2.0

Corollary 6.2.2

1. If $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on $[0, A]$, for any $A>0$
2. If $\left|f^{(i)}(t)\right| \leq K e^{a t}$ for $t>M$ and $i=0, \ldots, n-1$, with $K, M, a \in \mathbb{R}$ and $K, M>0$.

Then the Laplace transform $\mathcal{L}\left(f^{(n)}\right)(s)$ exists for $s>a$ and

$$
\mathcal{L}\left(f^{(n)}\right)(s)=s^{n} \mathcal{L}(f)(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

Upshot: We can write $\mathcal{L}\left(f^{(n)}\right)(s)$ in term of $\mathcal{L}(f)(s)$ and the values of $f^{(i)}(0)$.

Back to ODEs

$$
\mathcal{L}\left(f^{(n)}\right)(s)=s^{n} \mathcal{L}(f)(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

Exercise 6.2.11

Use the Laplace transform to solve

$$
y^{\prime \prime}-y^{\prime}-6 y=0 ; \quad y(0)=1, y^{\prime}(0)=-1
$$

From Chapter 3, we already know that

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}=\frac{1}{5}, c_{2}=\frac{4}{5}
$$

Upshot of $\S 6.1$ and 6.2

nth-order linear (with constant coefficients) ODEs in the t-domain

$$
y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\cdots+a_{0} y(t)=g(t)
$$

$$
\Leftrightarrow
$$

Algebraic equations in the s-domain

$$
\begin{gathered}
+ \\
\text { Inverting Laplace Transform }
\end{gathered}
$$

Next sections: We will address generalize $g(t)$.

Step functions

Definition

The function $u_{c}(t):=\left\{\begin{array}{ll}0, & t<c \\ 1, & t \geq c .\end{array}\right.$ is known as the unit step function or
Heaviside function.

Exercise

Check $\mathcal{L}\left(u_{c}\right)(s)=\left\{\begin{array}{ll}e^{-\operatorname{cs} \frac{1}{s}}, & c>0 \\ \frac{1}{s} & c<0\end{array} \quad s>0\right.$
Indeed,

$$
\mathcal{L}\left(u_{c}(t) f(t-c)\right)(s)=e^{-c s} \mathcal{L}(f)(s), \quad c>0
$$

§6.3 summary

$$
u_{c}(t):= \begin{cases}0, & t<c \\ 1, & t \geq c\end{cases}
$$

Theorem 6.3.1
If $\mathcal{L}(f)(s)$ exists for $s>a \geq 0$ and $c>0$, then

$$
\mathcal{L}\left[u_{c}(t) f(t-c)\right](s)=e^{-c s} \mathcal{L}(f)(s), \quad s>a
$$

Theorem 6.3.2
If $\mathcal{L}(f)(s)$ exists for $s>a \geq 0$, then

$$
\mathcal{L}\left[e^{c t} f(t)\right](s)=\mathcal{L}(f)(s-c), \quad s>a+c
$$

Exercise 6.3.20

Exercise

Find the inverse Laplace Transform of

$$
\frac{e^{-2 s}}{s^{2}+s-2}
$$

$\cdot \frac{1}{s^{2}+s-2}=\frac{1}{3}\left(\frac{1}{s-1}-\frac{1}{s+2}\right)$

- $\frac{1}{s-a}=\mathcal{L}\left(e^{a t}\right)$
- $e^{-2 s} \mathcal{L}(f)(s)=\mathcal{L}\left(u_{2}(t) f(t-2)\right)$
- $\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{s^{2}+s-2}\right)=\frac{1}{3} u_{2}(t)\left(e^{t-2}-e^{4-2 t}\right)$

Exercise 6.2.24

A typical exercise from §6.4.

Exercise 6.2.24

Solve $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}1, & 0 \leq t<\pi, \\ 0, & t \geq \pi ;\end{array} \quad y(0)=1, \quad y^{\prime}(0)=0\right.$
Note: $y^{\prime \prime}+4 y=1-u_{\pi}(t)$

$$
y(t)=\cos (2 t)+\frac{1}{4}(1-\cos (2 t))\left(1-u_{\pi}(t)\right)= \begin{cases}\frac{1+3 \cos (2 t)}{4} & 0 \leq t<\pi \\ \cos (2 t) & t \geq \pi\end{cases}
$$

Impulse functions, §6.5

We want a function δ such that:

- $\delta(t)=0$ for $t \neq 0$
- $\int_{-\infty}^{+\infty} \delta(t) f(t) \mathrm{d} t=f(0)$ for f continuous at 0 .

There is no such function!
However we can use it as "generalized function".
$\delta(t)$ is known as unit impulse function or as Dirac delta function Even though $\delta(t)$ is NOT a function!

$$
\mathcal{L}(\delta(t))(s)=1 \quad \mathcal{L}(\delta(t-c))(s)=e^{-c s}
$$

δ as a non existing limit of functions

We can think of $\delta(t)$ as the limit $\lim _{a \rightarrow 0} \frac{1}{a \sqrt{\pi}} e^{-(x / a)^{2}}$

Click here for gif!

As a non existing derivative

If f is differentiable and $\lim _{t \rightarrow+\infty} f(t)=0$ we have

$$
\begin{aligned}
\int_{\mathbb{R}} u_{0}(t)\left(-f^{\prime}(t)\right) \mathrm{d} t & =\int_{0}^{+\infty}\left(-f^{\prime}(t)\right) \mathrm{d} t \\
& =f(0)-\lim _{A \rightarrow+\infty} f(A)=f(0) \\
\int_{\mathbb{R}} u_{0}(t)\left(-f^{\prime}(t)\right) \mathrm{d} t " & =" \lim _{A \rightarrow+\infty}\left[-u_{0}(t) f(t)\right]_{A}^{A}+\int_{\mathbb{R}} \frac{\mathrm{d} u_{0}}{\mathrm{~d} t}(t) f(t) \mathrm{d} t \\
& =f(0)
\end{aligned}
$$

One can think of $\delta(t)=\frac{\mathrm{d}}{\mathrm{dt}} u_{0}(t)$
Click to check:

- $u_{0}(x)$ on Wolfram Alpha: link
- $u_{0}^{\prime}(x)$ on Wolfram Alpha: link

Exercise 6.5.6

Exercise 6.5.6

Solve $y^{\prime \prime}+4 y=\delta(t-4) ; y(0)=\frac{1}{2}, y^{\prime}(0)=0$
In the s-domain, with $F(s)=\mathcal{L}(y)(s)$

$$
\begin{gathered}
s^{2} F(s)-s \frac{1}{2}-0+4 F(s)=e^{-4 s} \\
\\
\Leftrightarrow \\
F(s)=\frac{1}{s^{2}+4}\left(e^{-4 s}+\frac{s}{2}\right)= \\
=\frac{1}{2}\left(e^{-4 s} \frac{2}{s^{2}+4}+\frac{s}{s^{2}+4}\right) \\
\end{gathered} \begin{gathered}
\Leftrightarrow(t)=\frac{1}{2}\left(u_{4}(t) \sin (2(t-4))+\cos (2 t)\right)
\end{gathered}
$$

Exercise 6.5.12

Exercise 6.5.12

Solve

$$
y^{(4)}-y=\delta(t-1) ; \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{(3)}(0)=0
$$

In the s-domain, with $F(s)=\mathcal{L}(y)(s)$

$$
\begin{gathered}
s^{4} F(s)-F(s)=e^{-s} \\
\Leftrightarrow
\end{gathered}
$$

$$
\begin{gathered}
F(s)=e^{-s} \frac{1}{s^{4}-1}=e^{-s} \frac{1}{(s-1)(s+1)\left(s^{2}-1\right)}=\frac{e^{-s}}{4}\left((-2) \frac{1}{s^{2}+1}-\frac{1}{s+1}+\frac{1}{s-1}\right) \\
\Leftrightarrow \\
y(t)=\frac{u_{1}(t)}{4}\left(-e^{1-t}+e^{t-1}+2 \sin (1-t)\right)
\end{gathered}
$$

The convolution integral

Theorem 6.6.1
If $F(s)=\mathcal{L}(f)(s)$ and $G(s)=\mathcal{L}(g)(s)$ for $s>a \geq 0$, then

$$
H(s)=F(s) G(s)=\mathcal{L}(h)(s)
$$

where

$$
h(t)=\int_{0}^{t} f(t-s) g(s) d s=\int_{0}^{t} f(t) g(t-s) d s:=(f * g)(t)
$$

The function $h(t)=(f * g)(t)$ is known as the convolution of f and g.

Exercise 6.6.14

Exercise 6.6.14

Solve $y^{\prime \prime}+2 y^{\prime}+2 y=\sin (\alpha t) ; \quad y(0)=0, y^{\prime}(0)=0$

- $\mathcal{L}(\sin (\alpha t))(s)=\frac{\alpha}{s^{2}+\alpha^{2}}$
- $s^{2} F(s)+2 s F(s)+2 F(s)=\frac{\alpha}{s^{2}+\alpha^{2}}$
- $F(s)=\frac{1}{(s+1)^{2}+1} \frac{\alpha}{s^{2}+\alpha^{2}}$
- $\mathcal{L}\left(e^{c t} f(t)\right)=\mathcal{L}(f)(s-c)$
. $y(t)=\sin (\alpha t) *\left(e^{-t} \sin t\right)$
$=\int_{0}^{t} \sin ((t-z) \alpha) e^{-z} \sin z d z$
Check out the Khan Academy video solving the same problem: link

Volterra integral equation

Exercise 6.6.21

Solve

$$
\phi(t)+\int_{0}^{t} k(t-z) \phi(z) d z=f(t)
$$

in terms of $\mathcal{L}(f)$ and $\mathcal{L}(k)$.

Exercise 6.6.25

1. Take $k(t)=2 \cos (t)$ and $f(t)=e^{-t}$, and solve the equation above.
2. Convert the equation above into a 2 nd order differential equation

Use: $\frac{\mathrm{d}}{\mathrm{d} t} \int_{0}^{t} k(t-z) \phi(z) \mathrm{d} z=k(0) \phi(t)+\int_{0}^{t} k^{\prime}(t-z) \phi(z) \mathrm{d} z$

