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Spring mass system

• Gravity force = mg
• Spring force = −kℓ, where ℓ is the elongation of the spring
• L = the equilibrium position, i.e., mg = KL
• u(t) = the displacement of mass from the equilibrium
position, measured downwards

• ⇒ Spring force = −k(L+ u)
• Damping/Friction: Fd = −γu′ (opposite direction)
• External force: F(t)

mu′′ = sum of all forces = mg︸︷︷︸
gravity

−k(L+ u)︸ ︷︷ ︸
spring

−γu′︸ ︷︷ ︸
damping

+ F︸︷︷︸
external
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⇔
mu′′ + γu′ + ku = F(t)

We can also do the same to model electric circuits.

Edgar Costa Math 23, Spring 2017 April 21, 2017 3 / 10



Spring mass system

mu′′ = sum of all forces = mg︸︷︷︸
gravity

−k(L+ u)︸ ︷︷ ︸
spring

−γu′︸ ︷︷ ︸
damping

+ F︸︷︷︸
external

⇔
mu′′ + γu′ + ku = F(t)

We can also do the same to model electric circuits.

Edgar Costa Math 23, Spring 2017 April 21, 2017 3 / 10



Classification

mu′′ + γu′ + ku = F(t)
m, k > 0 and γ ≥ 0

mr2 + γr+ k = 0⇒ r = −γ ±
√

γ2 − 4km
2m

• γ = 0 undamped
• γ > 0 damped

• γ2 − 4km < 0 underdamped
• γ2 − 4km = 0 critically damped (no oscillation)
• γ2 − 4km > 0 overdamped (no oscillation)

• F(t) = 0 free
• F(t) ̸= 0 and periodic, forced vibration
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Free oscillations

mu′′ + γu′ + ku = 0; mr2 + γr+ k = 0⇒ r = −γ ±
√

γ2 − 4km
2m

• γ2 − 4km < 0 undamped or underdamped⇒ r = −γ±
√

γ2−4km
2m = −α± ω0i

u(t) = e−αt (c1 cos(ω0t) + c2 sin(ω0t)) = · · · = Ae−αt cos(ω0t− b)
u(t) crosses the t-axis infinitely many times

• γ2 − 4km = 0 critically damped

u(t) = e−γt/2m(c1 + c2t)

limt→+∞ u(t) = 0 and only crosses the t-axis once!
• γ2 − 4km > 0 overdamped, u(t) = c1er1t + c2er2t, with r1, r2 < 0
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A picture is worth a thousand formulas
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Forced vibrations with damping

mu′′ + γu′ + ku = F0 cos(ω0t)
m, k > 0 and γ > 0

u(t) = uH(t) + up(t)

If γ > 0,
lim

t→+∞
uH(t) = 0

up(t) = A cos(ω0t) + B sin(ω0t)

Thus, regardless of the IVP if γ > 0 u(t) ≃ up(t) as t→ +∞.
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Resonance

ω0 = k/m and γ = 0 (for simplicity)

mu′′ + ku = F0 cos(ω0t)
uH(t) = A cos(ω0t− b), up(t) = tB cos(ω0t− b0)
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Resonance with damping

mu′′ + γu′ + ku = F0 cos(ωt)
m, k > 0 and γ > 0

up(t) = R cos(wt− b0)

Picking ω2 = k
m

(
1− γ2

2mk

)
and γ small, we get R ≃ F0m

γ
√
k/m

(
1+ γ2

8mk

)
.

Thus, if γ
√
k/m→ 0, the amplitude of particular solution goes to +∞.
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Exercise 3.7.7

A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,
contracting the spring a distance of 1 in, and then set in motion with a downward
velocity of 2 ft/s, and if there is no damping, find the position u of the mass at
any time t. Determine the frequency, period, amplitude, and phase of the motion.
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