Math 23, Spring 2017

Edgar Costa
April 21, 2017
Dartmouth College

Spring mass system

- Gravity force $=m g$
- Spring force $=-k \ell$, where ℓ is the elongation of the spring
- $L=$ the equilibrium position, i.e., $m g=K L$
- $u(t)=$ the displacement of mass from the equilibrium position, measured downwards
- \Rightarrow Spring force $=-k(L+u)$
- Damping/Friction: $F_{d}=-\gamma u^{\prime}$ (opposite direction)

- External force: $F(t)$

Spring mass system

- Gravity force $=m g$
- Spring force $=-k \ell$, where ℓ is the elongation of the spring
- $L=$ the equilibrium position, i.e., $m g=K L$
- $u(t)=$ the displacement of mass from the equilibrium position, measured downwards
- \Rightarrow Spring force $=-k(L+u)$
- Damping/Friction: $F_{d}=-\gamma u^{\prime}$ (opposite direction)

- External force: $F(t)$

$$
m u^{\prime \prime}=\text { sum of all forces }=\underbrace{m g}_{\text {gravity }} \underbrace{-k(L+u)}_{\text {spring }} \underbrace{-\gamma u^{\prime}}_{\text {damping }}+\underbrace{F}_{\text {external }}
$$

Spring mass system

$$
\begin{gathered}
m u^{\prime \prime}=\text { sum of all forces }= \\
\underbrace{m g}_{\text {gravity }} \underbrace{-k(L+u)}_{\text {spring }} \underbrace{-\gamma u^{\prime}}_{\text {damping }}+\underbrace{F}_{\text {external }} \\
\Leftrightarrow \\
m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)
\end{gathered}
$$

Spring mass system

$$
\begin{gathered}
m u^{\prime \prime}=\text { sum of all forces }=\underbrace{m g}_{\text {gravity }} \underbrace{-k(L+u)}_{\text {spring }} \underbrace{-\gamma u^{\prime}}_{\text {damping }}+\underbrace{F}_{\text {external }} \\
\Leftrightarrow \\
m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)
\end{gathered}
$$

We can also do the same to model electric circuits.

Classification

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t) \\
m, k>0 \text { and } \gamma \geq 0 \\
m r^{2}+\gamma r+k=0 \Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
\end{gathered}
$$

- $\gamma=0$ undamped
- $\gamma>0$ damped
- $\gamma^{2}-4 \mathrm{~km}<0$ underdamped
- $\gamma^{2}-4 k m=0$ critically damped (no oscillation)
- $\gamma^{2}-4 k m>0$ overdamped (no oscillation)
- $F(t)=0$ free
- $F(t) \neq 0$ and periodic, forced vibration

Classification

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t) \\
m, k>0 \text { and } \gamma \geq 0 \\
m r^{2}+\gamma r+k=0 \Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
\end{gathered}
$$

- $\gamma=0$ undamped
- $\gamma>0$ damped
- $\gamma^{2}-4 \mathrm{~km}<0$ underdamped
- $\gamma^{2}-4 k m=0$ critically damped (no oscillation)
- $\gamma^{2}-4 k m>0$ overdamped (no oscillation)
- $F(t)=0$ free
- $F(t) \neq 0$ and periodic, forced vibration

Free oscillations

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0 ; \quad m r^{2}+\gamma r+k=0 \Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
$$

- $\gamma^{2}-4 k m<0$ undamped or underdamped $\Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}=-\alpha \pm \omega_{0} i$ $u(t)=e^{-\alpha t}\left(c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)\right)=\cdots=A e^{-\alpha t} \cos \left(\omega_{0} t-b\right)$ $u(t)$ crosses the t-axis infinitely many times

Free oscillations

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0 ; \quad m r^{2}+\gamma r+k=0 \Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
$$

- $\gamma^{2}-4 k m<0$ undamped or underdamped $\Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}=-\alpha \pm \omega_{0} i$ $u(t)=e^{-\alpha t}\left(c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)\right)=\cdots=A e^{-\alpha t} \cos \left(\omega_{0} t-b\right)$ $u(t)$ crosses the t-axis infinitely many times
- $\gamma^{2}-4 k m=0$ critically damped

$$
u(t)=e^{-\gamma t / 2 m}\left(c_{1}+c_{2} t\right)
$$

$\lim _{t \rightarrow+\infty} u(t)=0$ and only crosses the t-axis once!

Free oscillations

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0 ; \quad m r^{2}+\gamma r+k=0 \Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
$$

- $\gamma^{2}-4 k m<0$ undamped or underdamped $\Rightarrow r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}=-\alpha \pm \omega_{0} i$ $u(t)=e^{-\alpha t}\left(c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)\right)=\cdots=A e^{-\alpha t} \cos \left(\omega_{0} t-b\right)$ $u(t)$ crosses the t-axis infinitely many times
- $\gamma^{2}-4 k m=0$ critically damped

$$
u(t)=e^{-\gamma t / 2 m}\left(c_{1}+c_{2} t\right)
$$

$\lim _{t \rightarrow+\infty} u(t)=0$ and only crosses the t-axis once!

- $\gamma^{2}-4 k m>0$ overdamped, $u(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$, with $r_{1}, r_{2}<0$

A picture is worth a thousand formulas

\square Undamped
\square Underdamped
\square Critically dampe
\square Overdamped

Forced vibrations with damping

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos \left(\omega_{0} t\right) \\
m, k>0 \text { and } \gamma>0
\end{gathered}
$$

$$
u(t)=u_{H}(t)+u_{p}(t)
$$

Forced vibrations with damping

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos \left(\omega_{0} t\right) \\
m, k>0 \text { and } \gamma>0
\end{gathered}
$$

$u(t)=u_{H}(t)+u_{p}(t)$
If $\gamma>0$,

$$
\begin{gathered}
\lim _{t \rightarrow+\infty} u_{H}(t)=0 \\
u_{p}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Thus, regardless of the IVP if $\gamma>0 u(t) \simeq u_{p}(t)$ as $t \rightarrow+\infty$.

Resonance

$\omega_{0}=k / m$ and $\gamma=0$ (for simplicity)

$$
\begin{gathered}
m u^{\prime \prime}+k u=F_{0} \cos \left(\omega_{0} t\right) \\
u_{H}(t)=A \cos \left(\omega_{0} t-b\right), \quad u_{p}(t)=t B \cos \left(\omega_{0} t-b_{0}\right)
\end{gathered}
$$

Resonance

$\omega_{0}=k / m$ and $\gamma=0$ (for simplicity)

$$
\begin{gathered}
m u^{\prime \prime}+k u=F_{0} \cos \left(\omega_{0} t\right) \\
u_{H}(t)=A \cos \left(\omega_{0} t-b\right), \quad u_{p}(t)=t B \cos \left(\omega_{0} t-b_{0}\right)
\end{gathered}
$$

Resonance with damping

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos (\omega t) \\
m, k>0 \text { and } \gamma>0 \\
u_{p}(t)=R \cos \left(w t-b_{0}\right)
\end{gathered}
$$

Picking $\omega^{2}=\frac{k}{m}\left(1-\frac{\gamma^{2}}{2 m k}\right)$ and γ small, we get $R \simeq \frac{F_{0} m}{\gamma \sqrt{k / m}}\left(1+\frac{\gamma^{2}}{8 m k}\right)$.

Resonance with damping

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos (\omega t) \\
m, k>0 \text { and } \gamma>0 \\
u_{p}(t)=R \cos \left(w t-b_{0}\right)
\end{gathered}
$$

Picking $\omega^{2}=\frac{k}{m}\left(1-\frac{\gamma^{2}}{2 m k}\right)$ and γ small, we get $R \simeq \frac{F_{0} m}{\gamma \sqrt{k / m}}\left(1+\frac{\gamma^{2}}{8 m k}\right)$.
Thus, if $\gamma \sqrt{k / m} \rightarrow 0$, the amplitude of particular solution goes to $+\infty$.

Exercise 3.7.7

A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in , and then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion.

