Math 23, Spring 2017

Edgar Costa
April 19, 2017
Dartmouth College

Last time: Method of undetermined coefficients

To find the general solution for the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{NH}
\end{equation*}
$$

we need to find one solution for it, y_{p} known as a particular solution, and then find a fundamental solution set $\left\{y_{1}, y_{2}\right\}$ for the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{H}
\end{equation*}
$$

Then, we can write the general solution for (NH) as

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

Note: Only works for a narrow class of functions $g(t)$

Today: Variation of parameters

Idea

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{H}
\end{equation*}
$$

What if we search for $y_{p}(t)$, a solution of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{NH}
\end{equation*}
$$

of the following form

$$
\tilde{y}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

with $u_{1}(t)$ and $u_{2}(t)$ unknown.

Today: Variation of parameters

Idea

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{H}
\end{equation*}
$$

What if we search for $y_{p}(t)$, a solution of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{NH}
\end{equation*}
$$

of the following form

$$
\tilde{y}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

with $u_{1}(t)$ and $u_{2}(t)$ unknown.

Note: Very similar to the reduction of order method!

Variation of parameters: some assumptions

We have

$$
\begin{aligned}
\tilde{y} & =u_{1} y_{1}+u_{2} y_{2} \\
\tilde{y}^{\prime} & =u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
\end{aligned}
$$

If we don't impose anything extra condition on u_{1} and u_{2}, then $\tilde{y}^{\prime \prime}$ will depend on $u_{1}^{\prime \prime}$ and $u_{2}^{\prime \prime}$, and this will lead to a harder problem!

Variation of parameters: some assumptions

We have

$$
\begin{aligned}
\tilde{y} & =u_{1} y_{1}+u_{2} y_{2} \\
\tilde{y}^{\prime} & =u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
\end{aligned}
$$

If we don't impose anything extra condition on u_{1} and u_{2}, then $\tilde{y}^{\prime \prime}$ will depend on $u_{1}^{\prime \prime}$ and $u_{2}^{\prime \prime}$, and this will lead to a harder problem! We impose

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \text { for all } t
$$

Thus

$$
\tilde{y}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
$$

Variation of parameters: the math

Plugging

$$
\begin{aligned}
\tilde{y} & =u_{1} y_{1}+u_{2} y_{2} \\
\tilde{y}^{\prime} & =u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
\tilde{y}^{\prime \prime} & =u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} .
\end{aligned}
$$

in $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, we get

Variation of parameters: the math

Plugging

$$
\begin{aligned}
\tilde{y} & =u_{1} y_{1}+u_{2} y_{2} \\
\tilde{y}^{\prime} & =u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
\tilde{y}^{\prime \prime} & =u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} .
\end{aligned}
$$

in $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, we get two equations

$$
\left\{\begin{array} { l }
{ u _ { 1 } ^ { \prime } y _ { 1 } + u _ { 2 } ^ { \prime } y _ { 2 } = 0 } \\
{ u _ { 1 } (y _ { 1 } ^ { \prime \prime } + p y _ { 1 } ^ { \prime } + q y _ { 1 } ^ { \prime }) + u _ { 2 } (y _ { 2 } ^ { \prime \prime } + p y _ { 2 } ^ { \prime } + q y _ { 2 } ^ { \prime }) + u _ { 1 } ^ { \prime } y _ { 1 } ^ { \prime } + u _ { 2 } ^ { \prime } y _ { 2 } ^ { \prime } = g (t) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array}\right.\right.
$$

Can we solve the system?

The return of the Wronskian

We started with a fundamental solution set, thus $W\left(y_{1}, y_{2}\right)(t) \neq 0$. Hence, we can solve for u_{1}^{\prime} and u_{2}^{\prime} algebraically.

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array} \Leftrightarrow\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g(t)}\right.
$$

The return of the Wronskian

We started with a fundamental solution set, thus $W\left(y_{1}, y_{2}\right)(t) \neq 0$. Hence, we can solve for u_{1}^{\prime} and u_{2}^{\prime} algebraically.

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array} \Leftrightarrow\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g(t)}\right.
$$

Recall, if $a d-b c \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{e}{f} \Leftrightarrow\left\{\begin{array}{l}
x=\frac{1}{a d-b c}(d e-b f) \\
y=\frac{1}{a d-b c}(a f-c e)
\end{array}\right.
$$

The return of the Wronskian

We started with a fundamental solution set, thus $W\left(y_{1}, y_{2}\right)(t) \neq 0$. Hence, we can solve for u_{1}^{\prime} and u_{2}^{\prime} algebraically.

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array} \Leftrightarrow\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g(t)}\right.
$$

Recall, if $a d-b c \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{e}{f} \Leftrightarrow\left\{\begin{array}{l}
x=\frac{1}{a d-b c}(d e-b f) \\
y=\frac{1}{a d-b c}(a f-c e)
\end{array}\right.
$$

In our case,

$$
\left\{\begin{array} { l }
{ u _ { 1 } ^ { \prime } = \frac { - g y _ { 2 } } { W (y _ { 1 } , y _ { 2 }) } } \\
{ u _ { 2 } ^ { \prime } = \frac { g y _ { 1 } } { W (y _ { 1 } , y _ { 2 }) } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{1}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.\right.
$$

Upshot

Variation of parameters

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
Then,

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \quad \text { with }\left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{1}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.
$$

is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Upshot

Variation of parameters

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
Then,

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \quad \text { with }\left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{1}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.
$$

is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Exercise 3.6.14

Consider the DE $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}$

1. Verify that $\left\{t, t e^{t}\right\}$ is a fundamental solution set.
2. Find a particular solution.

Upshot

Variation of parameters

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
Then,

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \quad \text { with }\left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{1}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.
$$

is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Exercise 3.6.14

Consider the DE $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}$

1. Verify that $\left\{t, t e^{t}\right\}$ is a fundamental solution set.
2. Find a particular solution.

Note: It would have been enough to know that t solves the homogeneous eqn.

Upshot

Variation of parameters

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then,

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \quad \text { with }\left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{1}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.
$$

is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Upshot

Variation of parameters

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then,

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \quad \text { with }\left\{\begin{array}{l}
u_{1}=\int \frac{-g y_{2}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}=\int \frac{g y_{2}}{W\left(y_{1}, y_{2}\right)}
\end{array}\right.
$$

is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Exercise 3.6.5

Solve $y^{\prime \prime}+y=\tan (t)$

