Math 23, Spring 2017

Edgar Costa
April 17, 2017
Dartmouth College

Nonhomogeneous equations

Last week we build an approach how to solve

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

What about

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) ?
$$

Main theorem

Theorem 3.5.1
If $\tilde{y_{1}}$ and $\tilde{y_{2}}$ are solutions of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{NH}
\end{equation*}
$$

then $\tilde{y_{1}}-\tilde{y}_{2}$ is a solution of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{H}
\end{equation*}
$$

Corollary

Assume that $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set of (H). and y_{p} is a particular solution of (NH). Then every solution for (NH) can be written as

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

Method of undetermined coefficients

To find the general solution for the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{NH}
\end{equation*}
$$

we need to find one solution for $i t, y_{p}$ known as a particular solution, and then find a fundamental solution set $\left\{y_{1}, y_{2}\right\}$ for the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{H}
\end{equation*}
$$

Then, we can write the general solution for (NH) as

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

Some particular solutions for $c_{n} y^{(n)}+\cdots+c_{1} y^{\prime}+c_{0} y=g(t)$

Example: $y^{\prime \prime}+y^{\prime}+y=g(t)$

$$
y^{\prime \prime}+y^{\prime}+y=g(t)
$$

- Homogeneous equation: $y^{\prime \prime}+y^{\prime}+y=0$
- Characteristic equation: $r^{2}+r+1=0 \Rightarrow r=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$
- General solution for the homogeneous equation:

$$
y(t)=c_{1} e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)
$$

- A general solution for $y^{\prime \prime}+y^{\prime}+y=g(t)$ will be of the shape:

$$
y(t)=c_{1} e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)+y_{p}(t)
$$

where $y_{p}(t)$ depends on $g(t)$.

Example: $y^{\prime \prime}+y^{\prime}+y=t^{3}+1$

- $g(t)=t^{3}+1 \rightsquigarrow y_{p}(t)=t^{s}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)$ for some $A_{3}, A_{2}, A_{1}, A_{0}$
- $s=0$, as 0 is not a root of $r^{2}+r+1\left(0^{2}+0^{1}+1 \neq 0\right)$
- Thus $y_{p}(t)$ is of the shape $A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}$
- $y_{p}^{\prime \prime}+y_{p}^{\prime}+y_{p}=t^{3}+1 \Rightarrow$

$$
\begin{gathered}
\left(6 A_{3} t+2 A_{2}\right)+\left(3 A_{3} t^{2}+2 A_{2} t+A_{1}\right)+\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)=t^{3}+1 \\
\Leftrightarrow \\
A_{3} t^{3}+\left(3 A_{3}+A_{2}\right) t^{2}+\left(6 A_{3}+2 A_{2}+A_{1}\right) t+\left(2 A_{2}+A_{1}+A_{0}\right)=1 t^{3}+0 t^{2}+0 t+1
\end{gathered}
$$

$$
\Leftrightarrow\left\{\begin{array} { l }
{ 1 = A _ { 3 } } \\
{ 0 = 3 A _ { 3 } + A _ { 2 } } \\
{ 0 = 6 A _ { 3 } + 2 A _ { 2 } + A _ { 1 } } \\
{ 1 = 2 A _ { 2 } + A _ { 1 } + A _ { 0 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
A_{3}=1 \\
A_{2}=-3 \\
A_{1}=0 \\
A_{0}=7
\end{array}\right.\right.
$$

Example: $y^{\prime \prime}+y^{\prime}+y=t^{3}+1$

Answer: A general solution for

$$
y^{\prime \prime}+y^{\prime}+y=t^{3}+1
$$

is

$$
y=\underbrace{c_{1} e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)}_{\text {the general solution for the homogeneous equation }}+\underbrace{t^{3}-3 t^{2}+7}_{\text {a particular solution }}
$$

- $g(t)=e^{-t / 2}\left(t^{2}+3\right) \rightsquigarrow y_{p}(t)=e^{-t / 2} t^{s}\left(A_{2} t^{2}+A_{1} t+A_{0}\right)$ for some A_{2}, A_{1}, A_{0}
- $s=0$, as $-\frac{1}{2}$ is not a root of $r^{2}+r+1$
- Thus $y_{p}(t)$ is of the shape $e^{-t / 2}\left(A_{2} t^{2}+A_{1} t+A_{0}\right)$
- Plugging it all in and solving the system we get

$$
A_{0}=\frac{4}{9}, A_{1}=0, A_{2}=\frac{12}{9}
$$

- Thus the general solution for $y^{\prime \prime}+y^{\prime}+y=e^{-t / 2}\left(t^{2}+3\right)$ is

$$
y(t)=\underbrace{c_{1} e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)}_{\text {the general solution for the homogeneous equation }}+\underbrace{e^{-t / 2} \frac{12 t^{2}+4}{9}}_{\text {a particular solution }}
$$

Example: $y^{\prime \prime}+y^{\prime}+y=\cos (\sqrt{3} t) t^{2}$

$$
y^{\prime \prime}+y^{\prime}+y=\cos (\sqrt{3} t) t^{2}
$$

- $0+\sqrt{3} i$ is not a root of $r^{2}+r+1 \Rightarrow s=0$

$$
y_{p}(t)=e^{0 t} \cos (\sqrt{3} t)\left(A_{2} t^{2}+A_{1} t+A_{0}\right)+e^{0 t} \sin (\sqrt{3} t)\left(B_{2} t^{2}+B_{1} t+B_{0}\right)
$$

- a system in six unknowns and six equations...

$$
\begin{array}{ll}
A_{2}=\frac{49}{343} \sqrt{3} & B_{2}=\frac{-98}{343} \\
A_{1}=\frac{84}{343} \sqrt{3} & B_{1}=\frac{322}{343} \\
A_{0}=\frac{-222}{343} \sqrt{3} & B_{0}=\frac{-18}{343}
\end{array}
$$

Example: $y^{\prime \prime}+y^{\prime}+y=e^{-t / 2} \cos (\sqrt{3} t / 2)(t+1)$

$$
y^{\prime \prime}+y^{\prime}+y=e^{\frac{-t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)(t+1)
$$

- $\frac{-1}{2}+\frac{\sqrt{3}}{2} i$ is a simple root of $r^{2}+r+1 \rightsquigarrow s=1$

$$
y_{p}(t)=t e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)\left(A_{1} t+A_{0}\right)+t e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)\left(B_{1} t+B_{0}\right)
$$

Example: $y^{\prime \prime}+4 y^{\prime}+3 y=g(t)$

- $r^{2}+4 r+3=(r+1)(r+3)$, thus the general homogeneous solution is

$$
y_{H}(t)=c_{1} e^{-3 t}+c_{2} e^{-t}
$$

- $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-3 t}(t+3)$
$r=-3$ is simple root $\rightsquigarrow s=1$ and

$$
y_{p}(t)=e^{-3 t} t\left(A_{1} t+A_{0}\right)
$$

- $y^{\prime \prime}+4 y^{\prime}+3 y=e^{4 t}(t+3)$
$r=4$ is not a root $\rightsquigarrow s=0$ and

$$
y_{p}(t)=e^{4 t}\left(A_{1} t+A_{0}\right)
$$

- $y^{\prime \prime}+4 y^{\prime}+3 y=\cos (2 t)$
$0+2 i$ is not a root $\rightsquigarrow s=0$ and

$$
y_{p}(t)=\cos (2 t) A_{0}+\sin (2 t) B_{0}
$$

Example: $y^{\prime \prime}-6 y^{\prime}+9 y=g(t)$

- $r^{2}-6 r+9=(r-3)^{2}$, thus the general homogeneous solution is

$$
y_{H}(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

- $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}(t+2)$
$r=3$ is double root $\rightsquigarrow s=2$ and

$$
y_{p}(t)=e^{3 t} t^{2}\left(A_{1} t+A_{0}\right)
$$

- $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t} \cos (t)(t+2)$
$r=3+i$ is not a root $\rightsquigarrow s=0$ and

$$
y_{p}(t)=e^{3 t} \cos (t)\left(A_{1} t+A_{0}\right)+e^{3 t} \sin (t)\left(B_{1} t+B_{0}\right)
$$

Example: $y^{\prime \prime}-6 y^{\prime}+9 y=g(t)$

- $y^{\prime \prime}-6 y^{\prime}+9 y=t+1 \rightsquigarrow$

$$
y_{p}(t)=\frac{1}{9} t+\frac{5}{27}
$$

- $y^{\prime \prime}-6 y^{\prime}+9 y=3 \cos (2 t) \rightsquigarrow$

$$
y_{p}(t)=\frac{15}{169} \cos (2 t)+\frac{-36}{169} \sin (2 t)
$$

- $y^{\prime \prime}-6 y^{\prime}+9 y=t+1+3 \cos (2 t) \rightsquigarrow$

$$
y_{p}(t)=\underbrace{\frac{1}{9} t+\frac{5}{27}}_{\text {particular solution for } g(t)=t+1}+\underbrace{\frac{15}{169} \cos (2 t)+\frac{-36}{169} \sin (2 t)}_{\text {particular solution for } g(t)=3 \cos (2 t)}
$$

Superposition of particular solutions

Theorem

If y_{1} is a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{1}(t)
$$

and y_{2} is a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{2}(t)
$$

then $y_{1}+y_{2}$ is a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{1}(t)+g_{2}(t)
$$

