Power Series Notes

A power series is a series of the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Recall the meaning of this notation:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

Let's go through some of the important ideas about power series we will need for series solutions to differential equations.

1. Convergence. A power series is said to converge at a point x if the limit of the partial sums exists, that is, the limit

$$
\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}\left(x-x_{0}\right)
$$

exists for that x. Notice that the series will certainly converge for $x=x_{0}$. The same power series is said to converge absolutely at a point x if the series

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|\left|x-x_{0}\right|^{n}
$$

converges. Certainly, if a power series converges absolutely, then it also converges. A useful test for absolute convergence of a power series is the ratio test. If for some x, consider the limit of the ratio of the $n+1$ st term to the nth term:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left|x-x_{0}\right| L
$$

The power series converges absolutely at a value x if $\left|x-x_{0}\right| L<1$ and diverges if $\left|x-x_{0}\right| L>1$. The test is inconclusive when $\left|x-x_{0}\right| L=1$. The radius of convergence, ρ, is the number so that a power series converges absolutely for all $\left|x-x_{0}\right|<\rho$. The interval of convergence is the interval around x_{0} for which $f(x)$ converges. (Remember to check endpoints!)
Example: Let's find the radius of convergence for $\sum_{n=0}^{\infty} \frac{2^{n}}{n}(x+1)^{n}$.
We use the ratio test and set it to less than 1 .

$$
\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(x+1)^{n+1} n}{2^{n}(x+1)^{n}(n+1)}\right|=2|x+1| \lim _{n \rightarrow \infty}\left|\frac{n}{n+1}\right|=2|x+1|<1
$$

From this, we obtain $|x+1|<1 / 2$. Therefore, it follows immediately from the ratio test that the radius of convergence is $1 / 2$.
Convergence is important for series solutions to differential equations because we need to know that the power series converges at a particular x in order to know that the solution exists at that point x.
2. Adding/subtracting series. Series can be added and subtracted just like polynomials (you add and subtract the coefficients). If $f(x)$ and $g(x)$ are power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { and } g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

then the sum/difference of $f(x)$ and $g(x)$ is

$$
f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right)\left(x-x_{0}\right)^{n}
$$

If $f(x)=g(x)$, then $a_{n}=b_{n}$ for all n. Also, if $f(x)=0$, then $a_{n}=0$ for all n.
3. Differentiating series. Power series can be differentiated term-wise:

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} .
$$

Question: What is $f^{\prime \prime}(x) ? f^{\prime \prime \prime}(x)$?

Question: What is $f\left(x_{0}\right)$? $f^{\prime}\left(x_{0}\right)$? $f^{\prime \prime}\left(x_{0}\right)$? What about $f^{(n)}\left(x_{0}\right)$ for general n ?

The Taylor series for a function $f(x)$ about $x=x_{0}$ is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

If the radius of convergence for this Taylor series is positive, $\rho>0$, then we say that the Taylor series is analytic at $x=x_{0}$.
4. Shift of Index of Summation. Often, we will want to write a power series with term $\left(x-x_{0}\right)^{n}$. Suppose we have

$$
\sum_{n=a}^{\infty} a_{n}\left(x-x_{0}\right)^{n-c}
$$

To write this with the term $\left(x-x_{0}\right)^{n}$, shift the indices to $m=n-c$. This means that $n=m+c$, so plug in $m+c$ wherever you see n, to get:

$$
\sum_{m=0}^{\infty} a_{m+c}\left(x-x_{0}\right)^{m}
$$

Since m is just a dummy variable, we can write this as:

$$
\sum_{n=0}^{\infty} a_{n+c}\left(x-x_{0}\right)^{n} .
$$

Question: Rewrite $f^{\prime}(x)$ (as we found above) with the term $\left(x-x_{0}\right)^{n}$.

Question: Rewrite $f^{\prime \prime}(x)$ (as we found above) with the term $\left(x-x_{0}\right)^{n}$.

