Laplace Transform (Optional) Extra Credit Assignment

Please see Chapter 6 for an overview of the Laplace Transform. You are welcome to use other sources as well. You can gain up to 1 point added to your final grade.

1. What is the Laplace transform? Why is it useful for solving differential equations?
2. Find the Laplace transform of

$$
f(t)=e^{4 t}-\cos (2 t)+e^{4 t} \cos (2 t)
$$

Do not compute this from the definition! Use linearity and Table 6.2.1.
3. Find the inverse Laplace transform of

$$
F(s)=\frac{2}{s+2}+\frac{8}{3 s^{2}+12}+\frac{9}{s^{5}} .
$$

4. Use the Laplace transform to find the solution to

$$
t y^{\prime \prime}-t y^{\prime}+y=4
$$

with $y(0)=4$ and $y^{\prime}(0)=2$.
5. Let $u_{c}(t)$ be the Heaviside function, defined for $c \geq 0$ to be

$$
u_{c}(t)= \begin{cases}0, & t<c \\ 1, & t \geq c\end{cases}
$$

The Laplace transform of the Heaviside function is

$$
\mathcal{L}\left(u_{c}(t)\right)=\frac{e^{-c s}}{s}, \quad s>0 .
$$

Consider the initial value problem $y^{\prime \prime}+y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$, where

$$
g(t)=u_{0}+\sum_{k=1}^{n}(-1)^{k} u_{k \pi}(t)
$$

(a) Draw the graph of $g(t)$ for $0 \leq t \leq 6 \pi$.
(b) Find the solution to the initial value problem.
(c) Let $n=15$ and plot the graph of the solution for $0 \leq t \leq 60$. Describe the solution and explain why it behaves as it does.
(d) Investigate how the solution changes as n increases. What happens as $n \rightarrow \infty$?
(e) Describe a physical situation which could be described by the above differential equation and explain what the solution means physically.

