Review Session for Math 23 Midterm: SOLUTIONS

Chapter 1:

1. State the order and whether the following are linear/non-linear:
(a) $y^{(4)}(t+\cos (t))=e^{t} y^{\prime} \quad$ Solution: Linear, 4 th order
(b) $\csc (t) y^{2}+\frac{1}{t} y^{\prime}=0 \quad$ Solution: Nonlinear, 1st order
2. For which values of r is t^{r} a solution to $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=0$ for $t>0$?

Solution: If $y(t)=t^{r}$, then $y^{\prime}(t)=r t^{r-1}$ and $y^{\prime \prime}(t)=r(r-1) t^{r-2}$. Plugging in, we find:

$$
t^{2}\left(r(r-1) t^{r-2}\right)-4 t\left(r t^{r-1}\right)+4 t^{r}=0
$$

which reduces to

$$
r^{2}-5 r+4=0
$$

Therefore, $r=4$ or $r=1$.

Chapter 2:

3. Find the solution to each:
(a) $t^{2} y^{\prime}+t y=t^{2} e^{t}$

Solution: First, get it in the right form:

$$
y^{\prime}+\frac{1}{t} y=e^{t} .
$$

Next, we find the integrating factor:

$$
\mu(t)=\exp \int \frac{1}{t} d t=e^{\ln (t)}=t
$$

Multiplying by the integrating factor, we get

$$
(t y)^{\prime}=t e^{t} .
$$

After integrating both sides (using IBP), we find that

$$
t y=t e^{t}-e^{t}
$$

and thus $y=e^{t}-e^{t} / t$.
(b) $y^{\prime}=\frac{e^{2 t}}{y}$

Solution: This is separable, so we obtain:

$$
y d y=e^{2 t} d t
$$

Integrating both sides, we get

$$
y^{2} / 2=e^{2 t} / 2+c .
$$

Therefore we implicitly get the solution $y^{2}=e^{2 t}+c$.
(c) $\left(2 x y^{2}\right)+\left(2 x^{2} y+2 y\right) y^{\prime}=0$

Solution: We can check that this equation is exact:

$$
M_{y}=4 x y=N_{x} .
$$

We want to find a solution of the form $\Phi(x, y)=c$ where $\Phi_{x}=M$ and $\Phi_{y}=N$. Integrating M with respect to x gets:

$$
\Phi=x^{2} y^{2}+h(y)
$$

Now taking Φ_{y} and comparing to N to find h :

$$
\Phi_{y}=2 x^{2} y+h^{\prime}(y)
$$

implies that $h^{\prime}(y)=2 y$ and so $h(y)=y^{2}$. Thus, the solution is

$$
x^{2} y^{2}+y^{2}=c .
$$

(d) $1+(x / y-\sin (y)) y^{\prime}=0$

Solution: This is not exact since

$$
M_{y}=0 \neq 1 / y=N_{x} .
$$

However, we can find an integrating factor $\mu(y)$ since

$$
\frac{N_{x}-M_{y}}{M}=1 / y
$$

is a function of y only. Solving

$$
\mu^{\prime}=\mu / y
$$

we find that $\mu=y$. So solving the original problem is equivalent to solving the exact equation: $y+(x-y \sin (y)) y^{\prime}=0$. We solve as above to find that the solution is:

$$
x y+y \cos (y)-\sin (y)=c .
$$

4. For which t and y do the following have a unique solution?
(a) $t^{2} y^{\prime}+3 t y=\cos (t)$

Solution: This is a linear DE. Putting in the right form,

$$
y^{\prime}=\frac{3}{t} y=\frac{\cos (t)}{t^{2}} .
$$

Since $p(t)$ and $g(t)$ are discontinuous at 0 , a unique solution may not exist when $t=0$.
(b) $y^{\prime}=\frac{3 t}{3 y-y^{2}}$

Solution: This is nonlinear, so we should use Picard's theorem. Checking where $f(t, y)$ and $f_{y}(t, y)$ are discontinuous, we see a unique solution may not exist when $y=0$ or $y=3$.

Chapter 3:

5. Find the solution to each:
(a) $3 y^{\prime \prime}+5 y^{\prime}+2 y=0$

Solution: The characteristic polynomial is $3 r^{2}+5 r+2=0$ which has roots $r=-1,-2 / 3$. Therefore the solution is:

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-2 t / 3} .
$$

(b) $4 y^{\prime \prime}+9 y=\cos 2 t$

Solution: The characteristic polynomial is $4 r^{2}+9=0$ which has roots $r= \pm 3 i / 2$. Therefore the homogeneous solution is:

$$
y_{h}(t)=c_{1} \cos (3 t / 2)+c_{2} \sin (3 t / 2) .
$$

We can use the method of undetermined coefficients. We guess a particular solution

$$
Y_{P}(t)=A \cos (2 t)+B \sin (2 t)
$$

This has derivatives

$$
Y_{P}^{\prime}(t)=-2 A \sin (2 t)+2 B \cos (2 t)
$$

and

$$
Y_{P}^{\prime \prime}(t)=-4 A \cos (2 t)-4 B \sin (2 t)
$$

Plugging in, we find that

$$
4(-4 A \cos (2 t)-4 B \sin (2 t))+9(A \cos (2 t)+B \sin (2 t))=\cos (2 t)
$$

and thus $-16 A+9 A=1$ and $-16 B+9 B=0$, which implies that $A=-1 / 7$ and $B=0$. Therefore the general solution is

$$
y(t)=c_{1} \cos (3 t / 2)+c_{2} \sin (3 t / 2)-\frac{1}{7} \cos (2 t) .
$$

(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t} / t$

Solution: The characteristic polynomial is $r^{2}-6 r+9=0$, which has roots $r=3,3$. Therefore the homogeneous solution is

$$
y_{h}(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

We should use variation of parameters to find a solution of the form $Y_{P}(t)=$ $v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$. Let's find the Wronskian:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{3 t} & t e^{3 t} \\
3 e^{3 t} & 3 t e^{3 t}+e^{3 t}
\end{array}\right|=-e^{6 t}
$$

To find v_{1} and v_{2}, we solve certain 1 st order differential equations.

$$
v_{1}^{\prime}=\frac{-t e^{3 t} \cdot e^{3 t} / t}{-e^{6 t}}=1
$$

and

$$
v_{2}^{\prime}=\frac{e^{3 t} \cdot e^{3 t} / t}{-e^{6 t}}=-1 / t
$$

and so we find that $v_{1}=t$ and $v_{2}=-\ln (t)$. Thus, we find that the general solution is: $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}-\ln (t) t e^{3 t}$.
6. Given that $y(t)=e^{t}$ is one solution of $(t-1) y^{\prime \prime}-t y^{\prime}+y=0$, for $t>1$, find a second solution using reduction of order.
Solution: Suppose $y(t)=v(t) e^{t}$ is a solution. Then $y^{\prime}(t)=v^{\prime} e^{t}+v e^{t}$ and $y^{\prime \prime}(t)=$ $v^{\prime \prime} e_{t}+2 v^{\prime} e^{t}+v e^{t}$. Plugging in, we get that

$$
(t-1)\left(v^{\prime \prime} e_{t}+2 v^{\prime} e^{t}+v e^{t}\right)-t\left(v^{\prime} e^{t}+v e^{t}\right)+v e^{t}=0
$$

We get some cancellation, and find that $(t-1) e^{t} v^{\prime \prime}+(t-2) e^{t} v^{\prime}=0$. Let $w=v^{\prime}$ and we obtain a first order DE :

$$
w^{\prime}+\frac{(t-2)}{(t-1)} w=0
$$

Solving this first order DE, we get that $w=c_{1}(t-1) e^{-t}$ and so $v=c_{1} t e^{-t}+c_{2}$, and therefore the general solution is

$$
y(t)=c_{1} t+c_{2} e^{t}
$$

7. Verify that $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{-1}$ are the fundamental solutions of

$$
t^{2} y^{\prime \prime}-2 y=0, t>0
$$

Solution: We can verify this by checking that the Wronskian is nonzero.

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
t^{2} & t^{-1} \\
2 t & -t^{-2}
\end{array}\right|=-1-2=-3 \neq 0
$$

Chapter 4:

8. Find the solution to each:
(a) $y^{(3)}+4 y^{\prime}=0$

Solution: The characteristic equation is $r^{3}+4 r=0$. The roots are $r=0,2 i,-2 i$.
Therefore the solution is

$$
c_{1}+c_{2} \cos (2 t)+c_{3} \sin (2 t)
$$

(b) $y^{(4)}-5 y^{\prime \prime}+4 y=e^{t}$

Solution: The characteristic equation is $r^{4}-5 r^{2}+4=0$ which has roots $r=$ $\pm 1, \pm 2$. Therefore the homogenous solution is

$$
y_{h}(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}+c_{3} e^{-2 t}
$$

Since e^{t} appears in our homogeneous solution, we should multiply by t to get a "guess" for the particular solution:

$$
Y_{P}(t)=A t e^{t}
$$

The derivatives of this are: $Y_{P}^{\prime}(t)=A t e^{t}+A e_{t}, Y_{P}^{\prime \prime}(t)=A t e^{t}+2 A e_{t}, Y_{P}^{\prime \prime \prime}(t)=$ $A t e^{t}+3 A e_{t}$, and $Y_{P}^{(4)}(t)=A t e^{t}+4 A e_{t}$. Plugging in, we get

$$
\left(A t e^{t}+4 A e_{t}\right)-5\left(A t e^{t}+2 A e_{t}\right)+4\left(A t e^{t}\right)=e^{t}
$$

Now, we find that $4 \mathrm{~A}-10 \mathrm{~A}=1$, so $A=-1 / 6$. Therefore the solution is

$$
y_{h}(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}+c_{3} e^{-2 t}-\frac{1}{6} t e^{t}
$$

9. Check whether the following are linearly independent or linearly dependent:

$$
f_{1}(t)=2 t-3, \quad f_{2}(t)=2 t^{2}+1, \quad f_{3}(t)=3 t^{2}+t
$$

Solution: If they are linearly dependent, there should be some k_{1}, k_{2}, k_{3}, so that

$$
k_{1}(2 t-3)+k_{2}\left(2 t^{2}+1\right)+k_{3}\left(3 t^{2}+t\right)=0 .
$$

Plugging in $t=0$, this means that

$$
-3 k_{1}+k_{2}=0
$$

Plugging in $t=1$,

$$
-k_{1}+3 k_{2}+4 k_{3}=0
$$

Finally, plugging in $t=-1$,

$$
-5 k_{1}+3 k_{2}+2 k_{3}=0
$$

Solving this system of equations, we find that $k_{1}=k_{2}=k_{3}=0$ and so f_{1}, f_{2}, f_{3} are linearly independent.

Chapter 7:

10. Find the solution to the system of equations:

$$
\begin{aligned}
& x_{1}^{\prime}=3 x_{1}+6 x_{2} \\
& x_{2}^{\prime}=x_{1}-2 x_{2}
\end{aligned}
$$

with the initial conditions $x_{1}(0)=0, x_{2}(0)=1$.
Solution: First we find the eigenvalues of

$$
\boldsymbol{A}=\left(\begin{array}{cc}
3 & 6 \\
1 & -2
\end{array}\right)
$$

To do this, we set the determinant of $\boldsymbol{A}-\lambda \boldsymbol{I}$ equal to zero.

$$
\left|\begin{array}{cc}
3-\lambda & 6 \\
1 & -2-\lambda
\end{array}\right|=(3-\lambda)(-2-\lambda)-6=\lambda^{2}-\lambda-12=0
$$

Therefore $\lambda_{1}=4$ and $\lambda_{2}=-3$. Next, we find the eigenvectors for each eigenvalue. For eigenvalue $\lambda_{1}=4$, we plug in and get:

$$
\left(\begin{array}{cc}
-1 & 6 \\
1 & -6
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{0}{0} .
$$

Therefore $\eta_{1}=6 \eta_{2}$. So an eigenvector for this is: $\boldsymbol{\eta}=\binom{6}{1}$.
Now, for $\lambda=-3$, we get the matrix formula:

$$
\left(\begin{array}{ll}
6 & 6 \\
1 & 1
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{0}{0} .
$$

Therefore $\eta_{1}=-\eta_{2}$. So an eigenvector for this is: $\boldsymbol{\eta}=\binom{1}{-1}$.
So, we can write the solution as:

$$
\boldsymbol{x}=c_{1}\binom{6}{1} e^{4 t}+c_{2}\binom{1}{-1} e^{-3 t}
$$

Finally, we solve for c_{1} and c_{2} using our initial conditions.

$$
\boldsymbol{x}(0)=c_{1}\binom{6}{1}+c_{2}\binom{1}{-1} .
$$

And so, $6 c_{1}+c_{2}=0$ and $c_{1}-c_{2}=1$. Therefore, $c_{1}=1 / 7$ and $c_{2}=-6 / 7$. Plugging these in gives us our solution.

$$
\boldsymbol{x}=\frac{1}{7}\binom{6}{1} e^{4 t}-\frac{6}{7}\binom{1}{-1} e^{-3 t}
$$

11. Find the general solution to the system of equations:

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right) \boldsymbol{x}
$$

Solution: First we find the eigenvalues of \boldsymbol{A}. To do this, we set the determinant of $\boldsymbol{A}-\lambda \boldsymbol{I}$ equal to zero.

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
-5 & -1-\lambda
\end{array}\right|=(1-\lambda)(-1-\lambda)+10=\lambda^{2}+9=0
$$

Therefore $\lambda= \pm 3 i$. Next, we find an eigenvector for the eigenvalue $\lambda=3 i$.

$$
\left(\begin{array}{cc}
1-3 i & 2 \\
-5 & -1-3 i
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{0}{0}
$$

Therefore $(1-3 i) \eta_{1}=-2 \eta_{2}$. So an eigenvector for this is: $\boldsymbol{\eta}=\binom{1+3 i}{-5}$. Therefore one solution (using Euler's formula) looks like:

$$
\boldsymbol{x}_{\mathbf{1}}=\binom{1+3 i}{-5} e^{3 i t}=\binom{1+3 i}{-5}(\cos (3 t)+i \sin (3 t)) .
$$

Separating real and complex parts, we get that this equals:

$$
\boldsymbol{x}_{\mathbf{1}}=\binom{\cos (3 t)-3 \sin (3 t)}{-5 \cos (3 t)}+i\binom{3 \cos (3 t)+\sin (3 t)}{-5 \sin (3 t)}
$$

The real and complex parts of this solution are in fact, fundamental solutions. Therefore, we can write the general solution as the linear combination of these:

$$
\boldsymbol{x}=c_{1}\binom{\cos (3 t)-3 \sin (3 t)}{-5 \cos (3 t)}+c_{2}\binom{3 \cos (3 t)+\sin (3 t)}{-5 \sin (3 t)} .
$$

